Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Series Title
      Series Title
      Clear All
      Series Title
  • Reading Level
      Reading Level
      Clear All
      Reading Level
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Content Type
    • Item Type
    • Is Full-Text Available
    • Subject
    • Publisher
    • Source
    • Donor
    • Language
    • Place of Publication
    • Contributors
    • Location
343 result(s) for "symbolic machine learning"
Sort by:
Assessment of the Added-Value of Sentinel-2 for Detecting Built-up Areas
Monitoring of the human-induced changes and the availability of reliable and methodologically consistent urban area maps are essential to support sustainable urban development on a global scale. The Global Human Settlement Layer (GHSL) is a project funded by the European Commission, Joint Research Centre, which aims at providing scientific methods and systems for reliable and automatic mapping of built-up areas from remote sensing data. In the frame of the GHSL, the opportunities offered by the recent availability of Sentinel-2 data are being explored using a novel image classification method, called Symbolic Machine Learning (SML), for detailed urban land cover mapping. In this paper, a preliminary test was implemented with the purpose of: (i) assessing the applicability of the SML classifier on Sentinel-2 imagery; (ii) evaluating the complementarity of Sentinel-1 and Sentinel-2; and (iii) understanding the added-value of Sentinel-2 with respect to Landsat for improving global high-resolution human settlement mapping. The overall objective is to explore areas of improvement, including the possibility of synergistic use of the different sensors. The results showed that noticeable improvement of the quality of the classification could be gained from the increased spatial detail and from the thematic contents of Sentinel-2 compared to the Landsat derived product as well as from the complementarity between Sentinel-1 and Sentinel-2 images.
A New Method for Earth Observation Data Analytics Based on Symbolic Machine Learning
This work introduces a new classification method in the remote sensing domain, suitably adapted to dealing with the challenges posed by the big data processing and analytics framework. The method is based on symbolic learning techniques, and it is designed to work in complex and information-abundant environments, where relationships among different data layers are assessed in model-free and computationally-effective modalities. The two main stages of the method are the data reduction-sequencing and the association analysis. The former refers to data representation; the latter searches for systematic relationships between data instances derived from images and spatial information encoded in supervisory signals. Subsequently, a new measure named the evidence-based normalized differential index, inspired by the probability-based family of objective interestingness measures, evaluates these associations. Additional information about the computational complexity of the classification algorithm and some critical remarks are briefly introduced. An application of land cover mapping where the input image features are morphological and radiometric descriptors demonstrates the capacity of the method; in this instructive application, a subset of eight classes from the Corine Land Cover is used as the reference source to guide the training phase.
Plausible Reasoning in an Algorithm for Generation of Good Classification Tests
The paper is devoted to the application of the plausible reasoning principles to symbolic machine learning. It seems for us that the applications are essential and necessary to improve the efficiency of ML algorithms. Many such algorithms produce and use rules in the form of implication. The generation of these rules with respect to the object classes is discussed. Our classification rules are specific. Their premise part, called good closed tests (GCTs), should cover as many objects as possible. One of the algorithms of GCTs generation called NIAGARA is presented. The algorithm is revisited and new procedures based on plausible reasoning are proposed. Their correctness is proved in propositions. We use the following rules: implication, interdiction, inductive rules of extending current sets of goal-oriented objects, rules of pruning the domain of searching solution. They allow to rise the effectiveness of algorithms.
Spatial and Temporal Human Settlement Growth Differentiation with Symbolic Machine Learning for Verifying Spatial Policy Targets: Assiut Governorate, Egypt as a Case Study
Since 2005, Egypt has a new land-use development policy to control unplanned human settlement growth and prevent outlying growth. This study assesses the impact of this policy shift on settlement growth in Assiut Governorate, Egypt, between 1999 and 2020. With symbolic machine learning, we extract built-up areas from Landsat images of 2005, 2010, 2015, and 2020 and a Landscape Expansion Index with a new QGIS plugin tool (Growth Classifier) developed to classify settlement growth types. The base year, 1999, was produced by the national remote sensing agency. After extracting the built-up areas from the Landsat images, eight settlement growth types (infill, expansion, edge-ribbon, linear branch, isolated cluster, proximate cluster, isolated scattered, and proximate scattered) were identified for four periods (1999:2005, 2005:2010, 2010:2015, and 2015:2020). The results show that prior to the policy shift of 2005, the growth rate for 1999–2005 was 11% p.a. In all subsequent periods, the growth rate exceeded the target rate of 1% p.a., though by varying amounts. The observed settlement growth rates were 5% (2005:2010), 7.4% (2010:2015), and 5.3% (2015:2020). Although the settlements in Assiut grew primarily through expansion and infill, with the latter growing in importance during the last two later periods, outlying growth is also evident. Using four class metrics (number of patches, patch density, mean patch area, and largest patch index) for the eight growth types, all types showed a fluctuated trend between all periods, except for expansion, which always tends to increase. To date, the policy to control human settlement expansion and outlying growth has been unsuccessful.
Semantic biclustering for finding local, interpretable and predictive expression patterns
Background One of the major challenges in the analysis of gene expression data is to identify local patterns composed of genes showing coherent expression across subsets of experimental conditions. Such patterns may provide an understanding of underlying biological processes related to these conditions. This understanding can further be improved by providing concise characterizations of the genes and situations delimiting the pattern. Results We propose a method called semantic biclustering with the aim to detect interpretable rectangular patterns in binary data matrices. As usual in biclustering, we seek homogeneous submatrices, however, we also require that the included elements can be jointly described in terms of semantic annotations pertaining to both rows (genes) and columns (samples). To find such interpretable biclusters, we explore two strategies. The first endows an existing biclustering algorithm with the semantic ingredients. The other is based on rule and tree learning known from machine learning. Conclusions The two alternatives are tested in experiments with two Drosophila melanogaster gene expression datasets. Both strategies are shown to detect sets of compact biclusters with semantic descriptions that also remain largely valid for unseen (testing) data. This desirable generalization aspect is more emphasized in the strategy stemming from conventional biclustering although this is traded off by the complexity of the descriptions (number of ontology terms employed), which, on the other hand, is lower for the alternative strategy.
Finding semantic patterns in omics data using concept rule learning with an ontology-based refinement operator
Background Identification of non-trivial and meaningful patterns in omics data is one of the most important biological tasks. The patterns help to better understand biological systems and interpret experimental outcomes. A well-established method serving to explain such biological data is Gene Set Enrichment Analysis. However, this type of analysis is restricted to a specific type of evaluation. Abstracting from details, the analyst provides a sorted list of genes and ontological annotations of the individual genes; the method outputs a subset of ontological terms enriched in the gene list. Here, in contrary to enrichment analysis, we introduce a new tool/framework that allows for the induction of more complex patterns of 2-dimensional binary omics data. This extension allows to discover and describe semantically coherent biclusters. Results We present a new rapid method called sem1R that reveals interpretable hidden rules in omics data. These rules capture semantic differences between two classes: a target class as a collection of positive examples and a non-target class containing negative examples. The method is inspired by the CN2 rule learner and introduces a new refinement operator that exploits prior knowledge in the form of ontologies. In our work this knowledge serves to create accurate and interpretable rules. The novel refinement operator uses two reduction procedures: Redundant Generalization and Redundant Non-potential, both of which help to dramatically prune the rule space and consequently, speed-up the entire process of rule induction in comparison with the traditional refinement operator as is presented in CN2. Conclusions Efficiency and effectivity of the novel refinement operator were tested on three real different gene expression datasets. Concretely, the Dresden Ovary Dataset, DISC, and m2816 were employed. The experiments show that the ontology-based refinement operator speeds-up the pattern induction drastically. The algorithm is written in C++ and is published as an R package available at http://github.com/fmalinka/sem1r .
Symbolic Machine Learning: A Different Answer to the Problem of the Acquisition of Lexical Knowledge from Corpora
One relevant way to structure the domain of lexical knowledge (e.g. relations between lexical units) acquisition from corpora is to oppose numerical versus symbolic techniques. Numerical approaches of acquisition exploit the frequential aspect of data, have been widely used, and produce portable systems, but poor explanations of their results. Symbolic approaches exploit the structural aspect of data. Among them, the symbolic machine learning (ML) techniques can infer efficient and expressive patterns of a target relation from examples of elements that verify this relation. These methods are however far less known, and the aim of this paper is to point out their interest through the description of one precise experiment. To remove their supervised characteristic, and instead of opposing them to numerical approaches, we finally show that it is possible to combine one symbolic ML technique to one numerical one, and keep advantages of both (meaningful patterns, efficient extraction, portability).
Brownian regularity for the Airy line ensemble, and multi-polymer watermelons in Brownian last passage percolation
The Airy line ensemble is a positive-integer indexed system of random continuous curves whose finite dimensional distributions are given by the multi-line Airy process. It is a natural object in the KPZ universality class: for example, its highest curve, the Airy In this paper, we employ the Brownian Gibbs property to make a close comparison between the Airy line ensemble’s curves after affine shift and Brownian bridge, proving the finiteness of a superpolynomially growing moment bound on Radon-Nikodym derivatives. We also determine the value of a natural exponent describing in Brownian last passage percolation the decay in probability for the existence of several near geodesics that are disjoint except for their common endpoints, where the notion of ‘near’ refers to a small deficit in scaled geodesic energy, with the parameter specifying this nearness tending to zero. To prove both results, we introduce a technique that may be useful elsewhere for finding upper bounds on probabilities of events concerning random systems of curves enjoying the Brownian Gibbs property. Several results in this article play a fundamental role in a further study of Brownian last passage percolation in three companion papers (Hammond 2017a,b,c), in which geodesic coalescence and geodesic energy profiles are investigated in scaled coordinates.
Interpretable scientific discovery with symbolic regression: a review
Symbolic regression is emerging as a promising machine learning method for learning succinct underlying interpretable mathematical expressions directly from data. Whereas it has been traditionally tackled with genetic programming, it has recently gained a growing interest in deep learning as a data-driven model discovery tool, achieving significant advances in various application domains ranging from fundamental to applied sciences. In this survey, we present a structured and comprehensive overview of symbolic regression methods, review the adoption of these methods for model discovery in various areas, and assess their effectiveness. We have also grouped state-of-the-art symbolic regression applications in a categorized manner in a living review.