Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
788 result(s) for "tall tower"
Sort by:
Reliability of ERA5 Reanalysis Data for Wind Resource Assessment: A Comparison against Tall Towers
The reliability of ERA5 reanalyses for directly predicting wind resources and energy production has been assessed against observations from six tall towers installed over very heterogeneous sites around the world. Scores were acceptable at the FINO3 (Germany) offshore platform for both wind speed (bias within 1%, r = 0.95−0.96) and capacity factor (CF, at worst biased by 6.70%) and at the flat and sea-level site of Cabauw (Netherlands) for both wind speed (bias within 7%, r = 0.93−0.94) and CF (bias within 6.82%). Conversely, due to the ERA5 limited resolution (~31 km), large under-predictions were found at the Boulder (US) and Ghoroghchi (Iran) mountain sites, and large over-predictions were found at the Wallaby Creek (Australia) forested site. Therefore, using ERA5 in place of higher-resolution regional reanalysis products or numerical weather prediction models should be avoided when addressing sites with high variation of topography and, in particular, land use. ERA5 scores at the Humansdorp (South Africa) coastal location were generally acceptable, at least for wind speed (bias of 14%, r = 0.84) if not for CF (biased by 20.84%). However, due to the inherent sea–land discontinuity resulting in large differences in both surface roughness and solar irradiation (and thus stability conditions), a particular caution should be paid when applying ERA5 over coastal locations.
Towards assimilation of wind profile observations in the atmospheric boundary layer with a sub-kilometre-scale ensemble data assimilation system
Wind profile observations near the surface are rarely assimilated into numerical weather prediction models. More and more ground-based remote sensing devices for wind profile observations are used to get profiles up to the hub height of wind turbines. However, an observation impact of LiDAR-like wind profile measurements on data assimilation in the atmospheric boundary layer is unknown. We show here the observation impact of boundary layer wind profile measurements on a sub-kilometre-scale data assimilation system for the metropolitan area of Hamburg. This data assimilation system is based on the Kilometre-scale ENsemble Data Assimilation system and the COnsortium for Small-scale MOdelling model. In three stably stratified test cases, we show a positive observation impact of wind profile observations on wind speed in analyses and for forecasts. The analysis improvements in wind speed are propagated to improvements in temperature at forecast time in two of three cases. Additional assimilation of temperature and relative humidity increases the mean absolute increments only by a small amount compared to increments due to wind profile observations. Wind profile observations in the atmospheric boundary layer have therefore valuable information for data assimilation on small scales.
Space Efficiency in Tapered Super-Tall Towers
In modern skyscraper architecture, the preference for incorporating tapered building configurations is on the rise, constituting a prominent trend in the industry, particularly due to their structural and aerodynamic benefits. The efficient utilization of space is a critical consideration in the design of tapered skyscrapers, holding significant importance for sustainability. Nevertheless, the existing body of scholarly work falls short in providing an all-encompassing investigation into the space efficiency of super-tall towers featuring tapered configurations, despite their prevalent adoption. This research endeavors to rectify this notable void by undertaking an exhaustive examination of data derived from 40 case studies. The key findings are as follows: (1) average space efficiency was about 72%, with values fluctuating between a minimum of 55% and a maximum of 84%; (2) average ratio of core area to the gross floor area (GFA) registered about 26%, encompassing a spectrum ranging from 11% to 38%; (3) most tapered skyscrapers employed a central core design, primarily tailored for mixed-use purposes; (4) an outriggered frame system was the prevailing structural system, while composite materials were the most commonly used structural materials; and (5) significant differences in the influence of function and load-bearing systems on the space efficiency of tapered towers were not observed. The author anticipates that these results will offer valuable direction, particularly to architectural designers, as they work towards advancing the sustainable development of tapered skyscrapers.
ICOS Potenza (Italy) Atmospheric Station: A New Spot for the Observation of Greenhouse Gases in the Mediterranean Basin
The Integrated Carbon Observation System (ICOS) is the reference Research Infrastructure (RI) for the observation of greenhouse gases (GHGs) across Europe, providing standardised, long-term and high-precision measurements of the most relevant species (CO2, CH4, CO, etc.). The ICOS Atmosphere network currently extends throughout the continent, although the density of stations in the Mediterranean area is still low compared to Central and Northern Europe. In this context, the recently implemented class 1 continental station near Potenza in Basilicata, Italy—station code: POT—represents an important step forward in the extension of the ICOS atmosphere domain across the South, reducing the large spatial gaps existing between ICOS sites within the Mediterranean basin. Herein, we provide a description of the new ICOS POT station and the site where it operates, focusing mostly on the technical setup of the sampling system which plays a key role in GHG measurements. With a strong technical connotation, the present paper aims to be beneficial for the ICOS atmosphere community and those stations that intend to join the network in the future, providing an accurate description of the station at the level of single components. Moreover, a brief overview of the peculiarities of the site and the scientific perspectives to be pursued, together with very preliminary data collected at the new ICOS station, are presented. Preliminary data collected during a short campaign are compared with STILT (Stochastic Time-Inverted Lagrangian Transport) model results as a first test of the measurements and to provide a first insight of the specific Potenza situation in terms of GHG concentrations.
Fifty Years of Atmospheric Boundary-Layer Research at Cabauw Serving Weather, Air Quality and Climate
An overview is given of 50-year Cabauw observations and research on the structure and dynamics of the atmospheric boundary layer. It is shown that over time this research site with its 200-m meteorological tower has grown into an atmospheric observatory with a comprehensive observational program encompassing almost all aspects of the atmospheric column including its boundary conditions. This is accomplished by the Cabauw Experimental Site for Atmospheric Research (CESAR) a consortium of research institutes. CESAR plays an important role in the educational programs of the CESAR universities. The current boundary-layer observational program is described in detail, and other parts of the CESAR observational program discussed more briefly. Due to an open data policy the CESAR datasets are used by researchers all over the world. Examples are given of the use of the long time series for model evaluation, satellite validation, and process studies. The role of tall towers is discussed in relation to the development of more and better ground-based remote sensing techniques. CESAR is now incorporated into the Ruisdael observatory, the large-scale atmospheric research infrastructure in the Netherlands. With Ruisdael the embedding of the Dutch atmospheric community in national policy landscape, and in the European atmospheric research infrastructures is assured for the coming decade.
Investigating the source, transport, and isotope composition of water vapor in the planetary boundary layer
Increasing atmospheric humidity and convective precipitation over land provide evidence of intensification of the hydrologic cycle – an expected response to surface warming. The extent to which terrestrial ecosystems modulate these hydrologic factors is important to understand feedbacks in the climate system. We measured the oxygen and hydrogen isotope composition of water vapor at a very tall tower (185 m) in the upper Midwest, United States, to diagnose the sources, transport, and fractionation of water vapor in the planetary boundary layer (PBL) over a 3-year period (2010 to 2012). These measurements represent the first set of annual water vapor isotope observations for this region. Several simple isotope models and cross-wavelet analyses were used to assess the importance of the Rayleigh distillation process, evaporation, and PBL entrainment processes on the isotope composition of water vapor. The vapor isotope composition at this tall tower site showed a large seasonal amplitude (mean monthly δ18Ov ranged from −40.2 to −15.9 ‰ and δ2Hv ranged from −278.7 to −113.0 ‰) and followed the familiar Rayleigh distillation relation with water vapor mixing ratio when considering the entire hourly data set. However, this relation was strongly modulated by evaporation and PBL entrainment processes at timescales ranging from hours to several days. The wavelet coherence spectra indicate that the oxygen isotope ratio and the deuterium excess (dv) of water vapor are sensitive to synoptic and PBL processes. According to the phase of the coherence analyses, we show that evaporation often leads changes in dv, confirming that it is a potential tracer of regional evaporation. Isotope mixing models indicate that on average about 31 % of the growing season PBL water vapor is derived from regional evaporation. However, isoforcing calculations and mixing model analyses for high PBL water vapor mixing ratio events ( >  25 mmol mol−1) indicate that regional evaporation can account for 40 to 60 % of the PBL water vapor. These estimates are in relatively good agreement with that derived from numerical weather model simulations. This relatively large fraction of evaporation-derived water vapor implies that evaporation has an important impact on the precipitation recycling ratio within the region. Based on multiple constraints, we estimate that the summer season recycling fraction is about 30 %, indicating a potentially important link with convective precipitation.
Anthropogenic CO2 emissions from a megacity in the Yangtze River Delta of China
Anthropogenic CO 2 emissions from cities represent a major source contributing to the global atmospheric CO 2 burden. Here, we examined the enhancement of atmospheric CO 2 mixing ratios by anthropogenic emissions within the Yangtze River Delta (YRD), China, one of the world’s most densely populated regions (population greater than 150 million). Tower measurements of CO 2 mixing ratios were conducted from March 2013 to August 2015 and were combined with numerical source footprint modeling to help constrain the anthropogenic CO 2 emissions. We simulated the CO 2 enhancements (i.e., fluctuations superimposed on background values) for winter season (December, January, and February). Overall, we observed mean diurnal variation of CO 2 enhancement of 23.5~49.7 μmol mol −1 , 21.4~52.4 μmol mol −1 , 28.1~55.4 μmol mol −1 , and 29.5~42.4 μmol mol −1 in spring, summer, autumn, and winter, respectively. These enhancements were much larger than previously reported values for other countries. The diurnal CO 2 enhancements reported here showed strong similarity for all 3 years of the study. Results from source footprint modeling indicated that our tower observations adequately represent emissions from the broader YRD area. Here, the east of Anhui and the west of Jiangsu province contributed significantly more to the anthropogenic CO 2 enhancement compared to the other sectors of YRD. The average anthropogenic CO 2 emission in 2014 was 0.162 (± 0.005) mg m −2  s −1 and was 7 ± 3% higher than 2010 for the YRD. Overall, our emission estimates were significantly smaller (9.5%) than those estimated (0.179 mg m −2  s −1 ) from the EDGAR emission database.
Evaluation of MOPITT retrievals of lower-tropospheric carbon monoxide over the United States
The new Version 5 MOPITT (Measurements of Pollution in the Troposphere) product for carbon monoxide (CO) is the first satellite product to exploit simultaneous near‐infrared and thermal‐infrared observations to enhance retrieval sensitivity in the lower troposphere. This feature is important to air quality analyses and studies of CO sources. However, because of the influence of both thermal contrast and geophysical noise, the retrieval characteristics for this new multispectral product are highly variable. New V5 products for surface‐level CO concentrations have been evaluated over the contiguous United States using both in situ vertical profiles and NOAA ground‐based “Tall Tower” measurements. Validation results based on the in situ profiles indicate that retrieval biases are on the order of a few percent. However, direct comparisons with the Tall Tower measurements demonstrate that smoothing error, which depends on both the retrieval averaging kernels and CO variability in the lower troposphere, exhibits significant geographical and seasonal variability. Key Points New MOPITT CO retrievals exploit both thermal‐ and near‐infrared observations New retrievals exhibit strongly enhanced sensitivity in the lower troposphere MOPITT multispectral CO retrievals have been validated using in situ data sets
Regional Impact of Ozone Precursor Emissions on NOX and O3 Levels at ZOTTO Tall Tower in Central Siberia
Seasonal variations of the near‐surface NOX (= NO + NO2) and ozone (O3) mixing ratios at Zotino Tall Tower (ZOTTO), a remote site in central Siberia, are described for years 2007–2014. Conditional probability function analysis and back trajectories are used to determine the origins of clean (continental baseline, CB) and regional emissions‐influenced air. High NOX levels at the site are observed for air from industrial regions of western Siberia and Ural Mountains, whereas CB air originates from remote areas of North Eurasia within 55°–70°N. The estimated annual means of daytime O3 and NOX mixing ratios for CB air are 27.0 and 0.44 ppbv, correspondingly, versus the similar quantities of 27.9 and 0.79 ppbv for all data. Monthly ozone for CB air shows a distinct maximum in April, as is the case for Northern Hemisphere midlatitude baseline (NHMLB) air at the European inflow boundary according to the surface ozone data for Mace Head and Norwegian monitoring sites, and a minimum in late summer–early autumn reflecting a weak continental‐scale ozone production from biogenic sources of ozone precursors and wildfire emissions throughout the warm season. During spring and early summer under hot weather conditions, regional anthropogenic and wildfire emissions are an important source for ozone in the continental boundary layer over southern and central Siberia, resulting in surface ozone levels compared to or larger than those observed in NHMLB air. Throughout the remaining part of year, the central North Eurasia represents a sink for tropospheric ozone on a hemispheric scale. Key Points Seasonal variations of NOX and O3 at ZOTTO in Siberia show a signature of weakly polluted air due to the regional pollution Origins of clean and polluted air for the site are identified; seasonal cycle of the baseline ozone for central North Eurasia is estimated In spring‐summer, anthropogenic and fire emissions in Siberia provide a net source for tropospheric ozone in the NH midlatitudes
Observations of Atmospheric Methane and Carbon Dioxide Mixing Ratios: Tall-Tower or Mountain-Top Stations?
Mountain-top observations of greenhouse gas mixing ratios may be an alternative to tall-tower measurements for regional scale source and sink estimation. To investigate the equivalence or limitations of a mountain-top site as compared to a tall-tower site, we used the unique opportunity of comparing in situ measurements of methane ( CH 4 ) and carbon dioxide ( CO 2 ) mixing ratios at a mountain top (986 m above sea level, a.s.l.) with measurements from a nearby (distance 28.4 km) tall tower, sampled at almost the same elevation (1009 m a.s.l.). Special attention was given to, (i) how local wind statistics and greenhouse gas sources and sinks at the mountain top influence the observations, and (ii) whether mountain-top observations can be used as for those from a tall tower for constraining regional greenhouse gas emissions. Wind statistics at the mountain-top site are clearly more influenced by local flow systems than those at the tall-tower site. Differences in temporal patterns of the greenhouse gas mixing ratios observed at the two sites are mostly related to the influence of local sources and sinks at the mountain-top site. Major influences of local sources can be removed by applying a statistical filter ( 5 th percentile) or a filter that removes periods with unfavourable flow conditions. In the best case, the bias in mixing ratios between the mountain-top and the tall-tower sites after the application of the wind filter was - 0.0005 ± 0.0010  ppm for methane (September, 0000–0400 UTC) and 0.11 ± 0.18  ppm for CO 2 (February, 1200–1600 UTC). Temporal fluctuations of atmospheric CH 4 and CO 2 mixing ratios at both stations also showed good agreement (apart from CO 2 during summertime) as determined by moving bi-weekly Pearson correlation coefficients (up to 0.96 for CO 2 and 0.97 for CH 4 ). When only comparing mixing ratios minimally influenced by local sources (low bias and high correlation coefficients), our measurements indicate that mountain-top observations are comparable to tall-tower observations.