Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
1 result(s) for "task‐evoked functional MRI"
Sort by:
Evaluating brain parcellations using the distance‐controlled boundary coefficient
One important approach to human brain mapping is to define a set of distinct regions that can be linked to unique functions. Numerous brain parcellations have been proposed, using cytoarchitectonic, structural, or functional magnetic resonance imaging (fMRI) data. The intrinsic smoothness of brain data, however, poses a problem for current methods seeking to compare different parcellations. For example, criteria that simply compare within‐parcel to between‐parcel similarity provide even random parcellations with a high value. Furthermore, the evaluation is biased by the spatial scale of the parcellation. To address this problem, we propose the distance‐controlled boundary coefficient (DCBC), an unbiased criterion to evaluate discrete parcellations. We employ this new criterion to evaluate existing parcellations of the human neocortex in their power to predict functional boundaries for an fMRI data set with many different tasks, as well as for resting‐state data. We find that common anatomical parcellations do not perform better than chance, suggesting that task‐based functional boundaries do not align well with sulcal landmarks. Parcellations based on resting‐state fMRI data perform well; in some cases, as well as a parcellation defined on the evaluation data itself. Finally, multi‐modal parcellations that combine functional and anatomical criteria perform substantially worse than those based on functional data alone, indicating that functionally homogeneous regions often span major anatomical landmarks. Overall, the DCBC advances the field of functional brain mapping by providing an unbiased metric that compares the predictive ability of different brain parcellations to define brain regions that are functionally maximally distinct. We propose a new unbiased evaluation criterion (distance‐controlled boundary coefficient [DCBC]) for brain parcellations to overcome the drawback of existing evaluation criteria that are biased by spatial smoothness. Using DCBC, task‐evoked, and resting‐state functional magnetic resonance imaging data, we found resting‐state group parcellations predict task‐based functional boundaries very well, anatomical atlases predict functional boundaries no better than chance, and multi‐modal parcellations do not improve on resting‐state parcellations.