Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
LanguageLanguage
-
SubjectSubject
-
Item TypeItem Type
-
DisciplineDiscipline
-
YearFrom:-To:
-
More FiltersMore FiltersIs Peer Reviewed
Done
Filters
Reset
2,809
result(s) for
"tau Proteins - chemistry"
Sort by:
Structure-based classification of tauopathies
2021
The ordered assembly of tau protein into filaments characterizes several neurodegenerative diseases, which are called tauopathies. It was previously reported that, by cryo-electron microscopy, the structures of tau filaments from Alzheimer’s disease
1
,
2
, Pick’s disease
3
, chronic traumatic encephalopathy
4
and corticobasal degeneration
5
are distinct. Here we show that the structures of tau filaments from progressive supranuclear palsy (PSP) define a new three-layered fold. Moreover, the structures of tau filaments from globular glial tauopathy are similar to those from PSP. The tau filament fold of argyrophilic grain disease (AGD) differs, instead resembling the four-layered fold of corticobasal degeneration. The AGD fold is also observed in ageing-related tau astrogliopathy. Tau protofilament structures from inherited cases of mutations at positions +3 or +16 in intron 10 of
MAPT
(the microtubule-associated protein tau gene) are also identical to those from AGD, suggesting that relative overproduction of four-repeat tau can give rise to the AGD fold. Finally, the structures of tau filaments from cases of familial British dementia and familial Danish dementia are the same as those from cases of Alzheimer’s disease and primary age-related tauopathy. These findings suggest a hierarchical classification of tauopathies on the basis of their filament folds, which complements clinical diagnosis and neuropathology and also allows the identification of new entities—as we show for a case diagnosed as PSP, but with filament structures that are intermediate between those of globular glial tauopathy and PSP.
Cryo-electron microscopy structures of tau filaments from progressive supranuclear palsy and other tauopathies reveal new filament conformations, and suggest that tauopathies can be classified on several different levels according to their filament folds.
Journal Article
Regulatory mechanisms of tau protein fibrillation under the conditions of liquid–liquid phase separation
by
Surewicz, Witold K.
,
Boyko, Solomiia
,
Surewicz, Krystyna
in
Agglomeration
,
Alternative Splicing - genetics
,
Alzheimer Disease - genetics
2020
One of the hallmarks of Alzheimer’s disease and several other neurodegenerative disorders is the aggregation of tau protein into fibrillar structures. Building on recent reports that tau readily undergoes liquid–liquid phase separation (LLPS), here we explored the relationship between disease-related mutations, LLPS, and tau fibrillation. Our data demonstrate that, in contrast to previous suggestions, pathogenic mutations within the pseudorepeat region do not affect tau441’s propensity to form liquid droplets. LLPS does, however, greatly accelerate formation of fibrillar aggregates, and this effect is especially dramatic for tau441 variants with disease-related mutations. Most important, this study also reveals a previously unrecognized mechanism by which LLPS can regulate the rate of fibrillation in mixtures containing tau isoforms with different aggregation propensities. This regulation results from unique properties of proteins under LLPS conditions, where total concentration of all tau variants in the condensed phase is constant. Therefore, the presence of increasing proportions of the slowly aggregating tau isoform gradually lowers the concentration of the isoform with high aggregation propensity, reducing the rate of its fibrillation. This regulatory mechanism may be of direct relevance to phenotypic variability of tauopathies, as the ratios of fast and slowly aggregating tau isoforms in brain varies substantially in different diseases.
Journal Article
Novel tau filament fold in corticobasal degeneration
2020
Corticobasal degeneration (CBD) is a neurodegenerative tauopathy—a class of disorders in which the tau protein forms insoluble inclusions in the brain—that is characterized by motor and cognitive disturbances
1
–
3
. The H1 haplotype of
MAPT
(the tau gene) is present in cases of CBD at a higher frequency than in controls
4
,
5
, and genome-wide association studies have identified additional risk factors
6
. By histology, astrocytic plaques are diagnostic of CBD
7
,
8
; by SDS–PAGE, so too are detergent-insoluble, 37 kDa fragments of tau
9
. Like progressive supranuclear palsy, globular glial tauopathy and argyrophilic grain disease
10
, CBD is characterized by abundant filamentous tau inclusions that are made of isoforms with four microtubule-binding repeats
11
–
15
. This distinguishes such ‘4R’ tauopathies from Pick’s disease (the filaments of which are made of three-repeat (3R) tau isoforms) and from Alzheimer’s disease and chronic traumatic encephalopathy (CTE) (in which both 3R and 4R isoforms are found in the filaments)
16
. Here we use cryo-electron microscopy to analyse the structures of tau filaments extracted from the brains of three individuals with CBD. These filaments were identical between cases, but distinct from those seen in Alzheimer’s disease, Pick’s disease and CTE
17
–
19
. The core of a CBD filament comprises residues lysine 274 to glutamate 380 of tau, spanning the last residue of the R1 repeat, the whole of the R2, R3 and R4 repeats, and 12 amino acids after R4. The core adopts a previously unseen four-layered fold, which encloses a large nonproteinaceous density. This density is surrounded by the side chains of lysine residues 290 and 294 from R2 and lysine 370 from the sequence after R4.
Cyro-electron microscopy of tau filaments from people with corticobasal degeneration reveals a previously unseen four-layered fold, distinct from the filament structures seen in Alzheimer’s disease, Pick’s disease and chronic traumatic encephalopathy.
Journal Article
Structures of filaments from Pick’s disease reveal a novel tau protein fold
2018
The ordered assembly of tau protein into abnormal filamentous inclusions underlies many human neurodegenerative diseases
1
. Tau assemblies seem to spread through specific neural networks in each disease
2
, with short filaments having the greatest seeding activity
3
. The abundance of tau inclusions strongly correlates with disease symptoms
4
. Six tau isoforms are expressed in the normal adult human brain—three isoforms with four microtubule-binding repeats each (4R tau) and three isoforms that lack the second repeat (3R tau)
1
. In various diseases, tau filaments can be composed of either 3R or 4R tau, or of both. Tau filaments have distinct cellular and neuroanatomical distributions
5
, with morphological and biochemical differences suggesting that they may be able to adopt disease-specific molecular conformations
6
,
7
. Such conformers may give rise to different neuropathological phenotypes
8
,
9
, reminiscent of prion strains
10
. However, the underlying structures are not known. Using electron cryo-microscopy, we recently reported the structures of tau filaments from patients with Alzheimer’s disease, which contain both 3R and 4R tau
11
. Here we determine the structures of tau filaments from patients with Pick’s disease, a neurodegenerative disorder characterized by frontotemporal dementia. The filaments consist of residues Lys254–Phe378 of 3R tau, which are folded differently from the tau filaments in Alzheimer’s disease, establishing the existence of conformers of assembled tau. The observed tau fold in the filaments of patients with Pick’s disease explains the selective incorporation of 3R tau in Pick bodies, and the differences in phosphorylation relative to the tau filaments of Alzheimer’s disease. Our findings show how tau can adopt distinct folds in the human brain in different diseases, an essential step for understanding the formation and propagation of molecular conformers.
The structures of tau filaments from patients with the neurodegenerative disorder Pick’s disease show that the filament fold is different from that of the tau filaments found in Alzheimer’s disease.
Journal Article
TIA1 potentiates tau phase separation and promotes generation of toxic oligomeric tau
by
Shattuck, Jenifer
,
Mashimo, Bryce L.
,
Boudeau, Samantha
in
Amyloid - chemistry
,
Amyloid - metabolism
,
Biological Sciences
2021
Tau protein plays an important role in the biology of stress granules and in the stress response of neurons, but the nature of these biochemical interactions is not known. Here we show that the interaction of tau with RNA and the RNA binding protein TIA1 is sufficient to drive phase separation of tau at physiological concentrations, without the requirement for artificial crowding agents such as polyethylene glycol (PEG). We further show that phase separation of tau in the presence of RNA and TIA1 generates abundant tau oligomers. Prior studies indicate that recombinant tau readily forms oligomers and fibrils in vitro in the presence of polyanionic agents, including RNA, but the resulting tau aggregates are not particularly toxic. We discover that tau oligomers generated during copartitioning with TIA1 are significantly more toxic than tau aggregates generated by incubation with RNA alone or phase-separated tau complexes generated by incubation with artificial crowding agents. This pathway identifies a potentially important source for generation of toxic tau oligomers in tau-related neurodegenerative diseases. Our results also reveal a general principle that phase-separated RBP droplets provide a vehicle for coassortment of selected proteins. Tau selectively copartitions with TIA1 under physiological conditions, emphasizing the importance of TIA1 for tau biology. Other RBPs, such as G3BP1, are able to copartition with tau, but this happens only in the presence of crowding agents. This type of selective mixing might provide a basis through which membraneless organelles bring together functionally relevant proteins to promote particular biological activities.
Journal Article
Structure-based discovery of small molecules that disaggregate Alzheimer’s disease tissue derived tau fibrils in vitro
2022
Alzheimer’s disease (AD) is the consequence of neuronal death and brain atrophy associated with the aggregation of protein tau into fibrils. Thus disaggregation of tau fibrils could be a therapeutic approach to AD. The small molecule EGCG, abundant in green tea, has long been known to disaggregate tau and other amyloid fibrils, but EGCG has poor drug-like properties, failing to fully penetrate the brain. Here we have cryogenically trapped an intermediate of brain-extracted tau fibrils on the kinetic pathway to EGCG-induced disaggregation and have determined its cryoEM structure. The structure reveals that EGCG molecules stack in polar clefts between the paired helical protofilaments that pathologically define AD. Treating the EGCG binding position as a pharmacophore, we computationally screened thousands of drug-like compounds for compatibility for the pharmacophore, discovering several that experimentally disaggregate brain-derived tau fibrils in vitro. This work suggests the potential of structure-based, small-molecule drug discovery for amyloid diseases.
Evidence suggests that fibrous aggregates of protein tau may be the proximal cause of Alzheimer’s disease. Here, using atomic structures of tau fibrils from brains of people with Alzheimer’s disease, the authors have found small-molecule drug leads that disaggregate tau fibrils in vitro.
Journal Article
Disease-specific tau filaments assemble via polymorphic intermediates
2024
Intermediate species in the assembly of amyloid filaments are believed to play a central role in neurodegenerative diseases and may constitute important targets for therapeutic intervention
1
,
2
. However, structural information about intermediate species has been scarce and the molecular mechanisms by which amyloids assemble remain largely unknown. Here we use time-resolved cryogenic electron microscopy to study the in vitro assembly of recombinant truncated tau (amino acid residues 297–391) into paired helical filaments of Alzheimer’s disease or into filaments of chronic traumatic encephalopathy
3
. We report the formation of a shared first intermediate amyloid filament, with an ordered core comprising residues 302–316. Nuclear magnetic resonance indicates that the same residues adopt rigid, β-strand-like conformations in monomeric tau. At later time points, the first intermediate amyloid disappears and we observe many different intermediate amyloid filaments, with structures that depend on the reaction conditions. At the end of both assembly reactions, most intermediate amyloids disappear and filaments with the same ordered cores as those from human brains remain. Our results provide structural insights into the processes of primary and secondary nucleation of amyloid assembly, with implications for the design of new therapies.
A time-resolved cryogenic electron microscopy analysis provides structural information on the processes of primary and secondary nucleation of tau amyloid formation, with implications for the development of new therapies.
Journal Article
Structure-based inhibitors of tau aggregation
2018
Aggregated tau protein is associated with over 20 neurological disorders, which include Alzheimer's disease. Previous work has shown that tau's sequence segments VQIINK and VQIVYK drive its aggregation, but inhibitors based on the structure of the VQIVYK segment only partially inhibit full-length tau aggregation and are ineffective at inhibiting seeding by full-length fibrils. Here we show that the VQIINK segment is the more powerful driver of tau aggregation. Two structures of this segment determined by the cryo-electron microscopy method micro-electron diffraction explain its dominant influence on tau aggregation. Of practical significance, the structures lead to the design of inhibitors that not only inhibit tau aggregation but also inhibit the ability of exogenous full-length tau fibrils to seed intracellular tau in HEK293 biosensor cells into amyloid. We also raise the possibility that the two VQIINK structures represent amyloid polymorphs of tau that may account for a subset of prion-like strains of tau.
Journal Article
Tau stabilizes microtubules by binding at the interface between tubulin heterodimers
by
Henning Urlaub
,
Romina V. Hofele
,
Markus Zweckstetter
in
Alzheimer's disease
,
Amino Acid Sequence
,
Animals
2015
Significance Tau is an important microtubule-associated protein. Although the structureâfunction relationship of Tau has been intensively studied for many years primarily by molecular biology and biochemical approaches, little is still known about the molecular mechanisms by which Tau interacts with microtubules and promotes microtubule assembly. Here, we provide detailed insight into the Tauâmicrotubule association by using NMR spectroscopy and mass spectrometry. We show that Tau binds to microtubules by using small groups of residues, which are important for pathological aggregation of Tau. We further show that Tau stabilizes a straight protofilament conformation by binding to a hydrophobic pocket in between tubulin heterodimers. Our work is thus relevant to normal Tau action development and in Tau-related neurodegenerative diseases.
The structure, dynamic behavior, and spatial organization of microtubules are regulated by microtubule-associated proteins. An important microtubule-associated protein is the protein Tau, because its microtubule interaction is impaired in the course of Alzheimerâs disease and several other neurodegenerative diseases. Here, we show that Tau binds to microtubules by using small groups of evolutionary conserved residues. The binding sites are formed by residues that are essential for the pathological aggregation of Tau, suggesting competition between physiological interaction and pathogenic misfolding. Tau residues in between the microtubule-binding sites remain flexible when Tau is bound to microtubules in agreement with a highly dynamic nature of the Tauâmicrotubule interaction. By binding at the interface between tubulin heterodimers, Tau uses a conserved mechanism of microtubule polymerization and, thus, regulation of axonal stability and cell morphology.
Journal Article
Interaction between Aβ and Tau in the Pathogenesis of Alzheimer's Disease
by
Zhao, Ming
,
Li, Hao
,
Wei, Wei
in
Alzheimer Disease - metabolism
,
Alzheimer Disease - pathology
,
Alzheimer's disease
2021
Extracellular neuritic plaques composed of amyloid‑β (Aβ) protein and intracellular neurofibrillary tangles containing phosphorylated tau protein are the two hallmark proteins of Alzheimer's disease (AD), and the separate neurotoxicity of these proteins in AD has been extensively studied. However, interventions that target Aβ or tau individually have not yielded substantial breakthroughs. The interest in the interactions between Aβ and tau in AD is increasing, but related drug investigations are in their infancy. This review discusses how Aβ accelerates tau phosphorylation and the possible mechanisms and pathways by which tau mediates Aβ toxicity. This review also describes the possible synergistic effects between Aβ and tau on microglial cells and astrocytes. Studies suggest that the coexistence of Aβ plaques and phosphorylated tau is related to the mechanism by which Aβ facilitates the propagation of tau aggregation in neuritic plaques. The interactions between Aβ and tau mediate cognitive dysfunction in patients with AD. In summary, this review summarizes recent data on the interplay between Aβ and tau to promote a better understanding of the roles of these proteins in the pathological process of AD and provide new insights into interventions against AD.
Journal Article