Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
4,213
result(s) for
"tau Proteins - genetics"
Sort by:
Genome-wide meta-analysis for Alzheimer’s disease cerebrospinal fluid biomarkers
by
Debette, Stephanie
,
Lage, Carmen
,
Diehl-Schmid, Janine
in
Alzheimer's disease
,
Apolipoprotein E
,
Biomarkers
2022
Amyloid-beta 42 (Aβ42) and phosphorylated tau (pTau) levels in cerebrospinal fluid (CSF) reflect core features of the pathogenesis of Alzheimer’s disease (AD) more directly than clinical diagnosis. Initiated by the European Alzheimer & Dementia Biobank (EADB), the largest collaborative effort on genetics underlying CSF biomarkers was established, including 31 cohorts with a total of 13,116 individuals (discovery n = 8074; replication n = 5042 individuals). Besides the APOE locus, novel associations with two other well-established AD risk loci were observed; CR1 was shown a locus for Aβ42 and BIN1 for pTau. GMNC and C16orf95 were further identified as loci for pTau, of which the latter is novel. Clustering methods exploring the influence of all known AD risk loci on the CSF protein levels, revealed 4 biological categories suggesting multiple Aβ42 and pTau related biological pathways involved in the etiology of AD. In functional follow-up analyses, GMNC and C16orf95 both associated with lateral ventricular volume, implying an overlap in genetic etiology for tau levels and brain ventricular volume.
Journal Article
Leveraging large multi-center cohorts of Alzheimer disease endophenotypes to understand the role of Klotho heterozygosity on disease risk
2022
Two genetic variants in strong linkage disequilibrium (rs9536314 and rs9527025) in the Klotho ( KL ) gene, encoding a transmembrane protein, implicated in longevity and associated with brain resilience during normal aging, were recently shown to be associated with Alzheimer disease (AD) risk in cognitively normal participants who are APOE ε4 carriers. Specifically, the participants heterozygous for this variant (KL-SV HET+ ) showed lower risk of developing AD. Furthermore, a neuroprotective effect of KL-VS HET+ has been suggested against amyloid burden for cognitively normal participants, potentially mediated via the regulation of redox pathways. However, inconsistent associations and a smaller sample size of existing studies pose significant hurdles in drawing definitive conclusions. Here, we performed a well-powered association analysis between KL-VS HET+ and five different AD endophenotypes; brain amyloidosis measured by positron emission tomography (PET) scans (n = 5,541) or cerebrospinal fluid Aβ42 levels (CSF; n = 5,093), as well as biomarkers associated with tau pathology: the CSF Tau (n = 5,127), phosphorylated Tau (pTau181; n = 4,778) and inflammation: CSF soluble triggering receptor expressed on myeloid cells 2 (sTREM2; n = 2,123) levels. Our results found nominally significant associations of KL-VS HET+ status with biomarkers for brain amyloidosis (e.g., CSF Aβ positivity; odds ratio [OR] = 0.67 [95% CI, 0.55–0.78], β = 0.72, p = 0.007) and tau pathology (e.g., biomarker positivity for CSF Tau; OR = 0.39 [95% CI, 0.19–0.77], β = -0.94, p = 0.007, and pTau; OR = 0.50 [95% CI, 0.27–0.96], β = -0.68, p = 0.04) in cognitively normal participants, 60–80 years old, who are APOE e4-carriers. Our work supports previous findings, suggesting that the KL-VS HET+ on an APOE ε4 genotype background may modulate Aβ and tau pathology, thereby lowering the intensity of neurodegeneration and incidence of cognitive decline in older controls susceptible to AD.
Journal Article
Regional Overlap of Pathologies in Lewy Body Disorders
by
Gelpi, Ellen
,
Colom-Cadena, Martí
,
Cerquera, Catalina
in
A-Synuclein
,
Aged
,
Aged, 80 and over
2017
Lewy body disorders (LBD) are common neurodegenerative diseases characterized by the presence of aggregated α-synuclein in Lewy bodies and Lewy neurites in the central and peripheral nervous systems. The brains of patients with LBD often display other comorbid pathologies, i.e. insoluble tau, β-amyloid aggregates, TAR DNA-binding protein 43 (TDP-43) deposits, and argyrophilic grain disease (AGD). The incidence and physiological relevance of these concurrent pathological findings remain controversial. We performed a semiquantitative detailed mapping of α-synuclein, tau, β-amyloid (Aβ), TDP-43, and AGD pathologies in 17 areas in 63 LBD cases (44 with Parkinson disease [PD], 28 with dementia, and 19 with dementia with Lewy bodies). APOE and MAPT genetic variants were also investigated. A majority of LBD cases had 2 or 3 concomitant findings, particularly Alzheimer disease-related pathology. Pathological stages of tau, β-amyloid and α-synuclein pathologies were increased in cases with dementia. Aβ score was the best correlate of the time to dementia in PD. In addition, β-amyloid deposition correlated with α-synuclein load in all groups. MAPT H1 haplotype did not influence any assessed pathology in PD. These results highlight the common concurrence of pathologies in patients with LBD that may have an impact on the clinical expression of the diseases.
Journal Article
Alteration of gene expression and protein solubility of the PI 5-phosphatase SHIP2 are correlated with Alzheimer’s disease pathology progression
by
Thazin Htut, May
,
Ramos, Ana Raquel
,
Aydin, Emmanuel
in
Advertising executives
,
Aged
,
Aged, 80 and over
2024
A recent large genome-wide association study has identified
EGFR
(encoding the epidermal growth factor EGFR) as a new genetic risk factor for late-onset AD. SHIP2, encoded by
INPPL1
, is taking part in the signalling and interactome of several growth factor receptors, such as the EGFR. While
INPPL1
has been identified as one of the most significant genes whose RNA expression correlates with cognitive decline, the potential alteration of SHIP2 expression and localization during the progression of AD remains largely unknown. Here we report that gene expression of both
EGFR
and
INPPL1
was upregulated in AD brains. SHIP2 immunoreactivity was predominantly detected in plaque-associated astrocytes and dystrophic neurites and its increase was correlated with amyloid load in the brain of human AD and of 5xFAD transgenic mouse model of AD. While mRNA of
INPPL1
was increased in AD, SHIP2 protein undergoes a significant solubility change being depleted from the soluble fraction of AD brain homogenates and co-enriched with EGFR in the insoluble fraction. Using FRET-based flow cytometry biosensor assay for tau-tau interaction, overexpression of SHIP2 significantly increased the FRET signal while siRNA-mediated downexpression of SHIP2 significantly decreased FRET signal. Genetic association analyses suggest that some variants in
INPPL1
locus are associated with the level of CSF pTau. Our data support the hypothesis that SHIP2 is an intermediate key player of EGFR and AD pathology linking amyloid and tau pathologies in human AD.
Journal Article
The unexpected co-occurrence of GRN and MAPT p.A152T in Basque families: Clinical and pathological characteristics
by
Moreno, Fermin
,
Barandiaran, Myriam
,
Indakoetxea, Begoña
in
Alzheimer's disease
,
Aphasia
,
Autopsies
2017
The co-occurrence of the c.709-1G>A GRN mutation and the p.A152T MAPT variant has been identified in 18 Basque families affected by frontotemporal dementia (FTD). We aimed to investigate the influence of the p.A152T MAPT variant on the clinical and neuropathological features of these Basque GRN families.
We compared clinical characteristics of 14 patients who carried the c.709-1G>A GRN mutation (GRN+/A152T-) with 21 patients who carried both the c.709-1G>A GRN mutation and the p.A152T MAPT variant (GRN+/A152T+). Neuropsychological data (n = 17) and plasma progranulin levels (n = 23) were compared between groups, and 7 subjects underwent neuropathological studies. We genotyped six short tandem repeat markers in the two largest families. By the analysis of linkage disequilibrium decay in the haplotype block we estimated the time when the first ancestor to carry both genetic variants emerged. GRN+/A152T+ and GRN+/A152T- patients shared similar clinical and neuropsychological features and plasma progranulin levels. All were diagnosed with an FTD disorder, including behavioral variant FTD or non fluent / agrammatic variant primary progressive aphasia, and shared a similar pattern of neuropsychological deficits, predominantly in executive function, memory, and language. All seven participants with available brain autopsies (6 GRN+/A152T+, 1 GRN+/A152T-) showed frontotemporal lobar degeneration with TDP-43 inclusions (type A classification), which is characteristic of GRN carriers. Additionally, all seven showed mild to moderate tau inclusion burden: five cases lacked β-amyloid pathology and two cases had Alzheimer's pathology. The co-occurrence of both genes within one individual is recent, with the birth of the first GRN+/A152T+ individual estimated to be within the last 50 generations (95% probability).
In our sample, the p.A152T MAPT variant does not appear to show a discernible influence on the clinical phenotype of GRN carriers. Whether p.A152T confers a greater than expected propensity for tau pathology in these GRN carriers remains an open question.
Journal Article
Tau and Tauopathies
by
Robert M, Mathuranath PS
in
Alzheimer Disease - metabolism
,
Alzheimer Disease - pathology
,
Alzheimer's disease
2007
Tau protein is a neuronal microtubule-associated protein (MAP), which
localizes primarily in the axon. It is one of the major and most widely
distributed MAPs in the central nervous system. Its biochemistry and
molecular pathology is being increasingly studied. Tau is a key
component of neurofbrillary tangles in Alzheimer′s disease (AD).
Disorders with neuronal, oligodendroglial or astrocytic filamentous tau
inclusions are now grouped under the common rubric of tauopathies. The
discovery of mutations in the tau gene, located on Chromosome 17 and
its relationship to frontotemporal dementia with Parkinsonism (FTDP-17)
has enhanced the importance of tau protein in cognitive neurology.
Aberrant aggregates of tau have been documented in most of the
neurodegenerative diseases with filamentous inclusions. The role of
cerebrospinal fluid tau in the diagnosis of dementias is being
investigated quite extensively. Recently, it has been shown that Abeta
immunotherapy leads to the clearance of early tau pathology. It is
becoming clearer that understanding tau better will lead to better
understanding of many neurodegenerative diseases that may help develop
interventional strategies.
Journal Article
Genetic meta-analysis of diagnosed Alzheimer’s disease identifies new risk loci and implicates Aβ, tau, immunity and lipid processing
2019
Risk for late-onset Alzheimer’s disease (LOAD), the most prevalent dementia, is partially driven by genetics. To identify LOAD risk loci, we performed a large genome-wide association meta-analysis of clinically diagnosed LOAD (94,437 individuals). We confirm 20 previous LOAD risk loci and identify five new genome-wide loci (
IQCK
,
ACE
,
ADAM10
,
ADAMTS1
,
and
WWOX
), two of which (
ADAM10
,
ACE
) were identified in a recent genome-wide association (GWAS)-by-familial-proxy of Alzheimer’s or dementia. Fine-mapping of the human leukocyte antigen (HLA) region confirms the neurological and immune-mediated disease haplotype HLA-DR15 as a risk factor for LOAD. Pathway analysis implicates immunity, lipid metabolism, tau binding proteins, and amyloid precursor protein (APP) metabolism, showing that genetic variants affecting APP and Aβ processing are associated not only with early-onset autosomal dominant Alzheimer’s disease but also with LOAD. Analyses of risk genes and pathways show enrichment for rare variants (
P
= 1.32 × 10
−7
), indicating that additional rare variants remain to be identified. We also identify important genetic correlations between LOAD and traits such as family history of dementia and education.
Large genome-wide meta-analysis of clinically diagnosed late-onset Alzheimer’s disease (LOAD) from 94,437 individuals identifies new LOAD risk loci and implicates Aβ formation, tau protein binding, immune response and lipid metabolism.
Journal Article
Gene expression of estrogen receptor, progesterone receptor and microtubule-associated protein Tau in high-risk early breast cancer: a quest for molecular predictors of treatment benefit in the context of a Hellenic Cooperative Oncology Group trial
by
Papakostas, Pavlos
,
Pectasides, Dimitrios
,
Grimani, Irene
in
Adenocarcinoma - drug therapy
,
Adenocarcinoma - genetics
,
Adenocarcinoma - metabolism
2009
Background
Estrogen receptor (ER) and progesterone receptor (PgR) protein expression carry weak prognostic and moderate predictive utility for the outcome of early breast cancer patients on adjuvant chemohormonotherapy. We sought to study the predictive significance and correlations of transcriptional profiling of the ER, PgR and microtubule-associated protein Tau (MAP-Tau) genes in early breast cancer.
Materials and methods
Messenger RNA (mRNA) was extracted from 279 formalin-fixed paraffin-embedded breast carcinomas (T1-3N0-1M0) of patients enrolled in the Hellenic Cooperative Oncology Group (HeCOG) trial HE 10/97, evaluating epirubicin-alkylator based adjuvant chemotherapy with or without paclitaxel (E-T-CMF versus E-CMF). Kinetic reverse transcription polymerase chain reaction (kRT-PCR) was applied for assessment of the expression of estrogen receptor, progesterone receptor and MAP-Tau genes in 274 evaluable patients. Cohort-based cut-offs were defined at the 25th percentile mRNA value for ER and PgR and the median for MAP-Tau.
Results
Two hundred and ten patients (77%) were ER and/or PgR-positive by immunohistochemistry (IHC). Positive ER and MAP-Tau mRNA status was significantly associated with administration of hormonal therapy and low grade, while MAP-Tau mRNA status correlated with premenopausal patient status. MAP-Tau strongly correlated with ER and PgR mRNA status (Spearmann
r
= 0.52 and 0.64,
P
< 0.001). The observed chance corrected agreement between determination of hormonal receptor status by kRT-PCR and IHC was moderate (Kappa = 0.41) for ER and fair (Kappa = 0.33) for PgR. At a median follow-up of 8 years, univariate analysis adjusted for treatment showed positive ER mRNA status to be of borderline significance for reduced risk of relapse (HR = 0.65, 95% CI 0.41–1.01,
P
= 0.055) and death (HR = 0.62, 95% CI 0.36–1.05,
P
= 0.077), while positive MAP-Tau mRNA status was significantly associated with reduced risk of relapse (HR = 0.50, 95% CI 0.32–0.78,
P
= 0.002) and death (HR = 0.49, 95% CI 0.29–0.83,
P
= 0.008). In multivariate analysis, only axillary nodal metastases (HR = 2.33, 95% CI 1.05–5.16,
P
= 0.04) and MAP-Tau mRNA status (HR = 0.46, 95% CI 0.25–0.85,
P
= 0.01) independently predicted patient outcome. However, MAP-Tau mRNA levels did not predict enhanced benefit from inclusion of paclitaxel in the adjuvant chemotherapy regimen (test for interaction
P
= 0.99). No correlation was evident between increasing ER and PgR mRNA transcription and increasing benefit from endocrine therapy in 203 ER and/or PgR IHC-positive patients receiving adjuvant hormone therapy (Wald
P
= 0.54 for ER, 0.51 for PR).
Conclusions
ER gene transcription carries weak predictive significance for benefit from endocrine therapy or for outcome, with no apparent dose-response association. The predictive significance is possibly exerted via MAP-Tau gene expression, an ER-inducible tubulin modulator with strong predictive significance for patient outcome. However, MAP-Tau mRNA did not predict benefit from the addition of a taxane to adjuvant chemotherapy. Further study of the biologic function and utility of MAP-Tau for individualising adjuvant therapy is warranted.
Journal Article
Regulatory mechanisms of tau protein fibrillation under the conditions of liquid–liquid phase separation
by
Surewicz, Witold K.
,
Boyko, Solomiia
,
Surewicz, Krystyna
in
Agglomeration
,
Alternative Splicing - genetics
,
Alzheimer Disease - genetics
2020
One of the hallmarks of Alzheimer’s disease and several other neurodegenerative disorders is the aggregation of tau protein into fibrillar structures. Building on recent reports that tau readily undergoes liquid–liquid phase separation (LLPS), here we explored the relationship between disease-related mutations, LLPS, and tau fibrillation. Our data demonstrate that, in contrast to previous suggestions, pathogenic mutations within the pseudorepeat region do not affect tau441’s propensity to form liquid droplets. LLPS does, however, greatly accelerate formation of fibrillar aggregates, and this effect is especially dramatic for tau441 variants with disease-related mutations. Most important, this study also reveals a previously unrecognized mechanism by which LLPS can regulate the rate of fibrillation in mixtures containing tau isoforms with different aggregation propensities. This regulation results from unique properties of proteins under LLPS conditions, where total concentration of all tau variants in the condensed phase is constant. Therefore, the presence of increasing proportions of the slowly aggregating tau isoform gradually lowers the concentration of the isoform with high aggregation propensity, reducing the rate of its fibrillation. This regulatory mechanism may be of direct relevance to phenotypic variability of tauopathies, as the ratios of fast and slowly aggregating tau isoforms in brain varies substantially in different diseases.
Journal Article
Aggregated Tau activates NLRP3–ASC inflammasome exacerbating exogenously seeded and non-exogenously seeded Tau pathology in vivo
by
Cremers, Niels
,
Vanoosthuyse, Alexandre
,
Brône, Bert
in
Alzheimer's disease
,
Apoptosis
,
Inflammasomes
2019
Brains of Alzheimer’s disease patients are characterized by the presence of amyloid plaques and neurofibrillary tangles, both invariably associated with neuroinflammation. A crucial role for NLRP3–ASC inflammasome [NACHT, LRR and PYD domains-containing protein 3 (NLRP3)–Apoptosis-associated speck-like protein containing a CARD (ASC)] in amyloid-beta (Aβ)-induced microgliosis and Aβ pathology has been unequivocally identified. Aβ aggregates activate NLRP3–ASC inflammasome (Halle et al. in Nat Immunol 9:857–865, 2008) and conversely NLRP3–ASC inflammasome activation exacerbates amyloid pathology in vivo (Heneka et al. in Nature 493:674–678, 2013), including by prion-like ASC-speck cross-seeding (Venegas et al. in Nature 552:355–361, 2017). However, the link between inflammasome activation, as crucial sensor of innate immunity, and Tau remains unexplored. Here, we analyzed whether Tau aggregates acting as prion-like Tau seeds can activate NLRP3–ASC inflammasome. We demonstrate that Tau seeds activate NLRP3–ASC-dependent inflammasome in primary microglia, following microglial uptake and lysosomal sorting of Tau seeds. Next, we analyzed the role of inflammasome activation in prion-like or templated seeding of Tau pathology and found significant inhibition of exogenously seeded Tau pathology by ASC deficiency in Tau transgenic mice. We furthermore demonstrate that chronic intracerebral administration of the NLRP3 inhibitor, MCC950, inhibits exogenously seeded Tau pathology. Finally, ASC deficiency also decreased non-exogenously seeded Tau pathology in Tau transgenic mice. Overall our findings demonstrate that Tau-seeding competent, aggregated Tau activates the ASC inflammasome through the NLRP3–ASC axis, and we demonstrate an exacerbating role of the NLRP3–ASC axis on exogenously and non-exogenously seeded Tau pathology in Tau mice in vivo. The NLRP3–ASC inflammasome, which is an important sensor of innate immunity and intensively explored for its role in health and disease, hence presents as an interesting therapeutic approach to target three crucial pathogenetic processes in AD, including prion-like seeding of Tau pathology, Aβ pathology and neuroinflammation.
Journal Article