Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
31,008
result(s) for
"tectonic plates"
Sort by:
Burma Terrane part of the Trans-Tethyan arc during collision with India according to palaeomagnetic data
by
Hnin, Hnin Swe
,
Roperch, Pierrick
,
Dupont-Nivet, Guillaume
in
Biodiversity
,
Biota
,
Climate change
2019
Convergence between the Indian and Asian plates has reshaped large parts of Asia, changing regional climate and biodiversity, yet geodynamic models fundamentally diverge on how convergence was accommodated since the India–Asia collision. Here we report palaeomagnetic data from the Burma Terrane, which is at the eastern edge of the collision zone and is famous for its Cretaceous amber biota, to better determine the evolution of the India–Asia collision. The Burma Terrane was part of a Trans-Tethyan island arc and stood at a near-equatorial southern latitude at ~95 Ma, suggesting island endemism for the Burmese amber biota. The Burma Terrane underwent significant clockwise rotation between ~80 and 50 Ma, causing its subduction margin to become hyper-oblique. Subsequently, it was translated northward on the Indian Plate by an exceptional distance of at least 2,000 km along a dextral strike-slip fault system in the east. Our reconstructions are only compatible with geodynamic models involving an initial collision of India with a near-equatorial Trans-Tethyan subduction system at ~60 Ma, followed by a later collision with the Asian margin.
Journal Article
Titanium isotopic evidence for felsic crust and plate tectonics 3.5 billion years ago
by
Bindeman, Ilya N.
,
Greber, Nicolas D.
,
Dauphas, Nicolas
in
Atmospheric sciences
,
Chemical composition
,
Continental crust
2017
Earth exhibits a dichotomy in elevation and chemical composition between the continents and ocean floor. Reconstructing when this dichotomy arose is important for understanding when plate tectonics started and how the supply of nutrients to the oceans changed through time. We measured the titanium isotopic composition of shales to constrain the chemical composition of the continental crust exposed to weathering and found that shales of all ages have a uniform isotopic composition. This can only be explained if the emerged crust was predominantly felsic (silica-rich) since 3.5 billion years ago, requiring an early initiation of plate tectonics. We also observed a change in the abundance of biologically important nutrients phosphorus and nickel across the Archean-Proterozoic boundary, which might have helped trigger the rise in atmospheric oxygen.
Journal Article
Recurring and triggered slow-slip events near the trench at the Nankai Trough subduction megathrust
2017
The discovery of slow earthquakes has revolutionized the field of earthquake seismology. Defining the locations of these events and the conditions that favor their occurrence provides important insights into the slip behavior of tectonic faults. We report on a family of recurring slow-slip events (SSEs) on the plate interface immediately seaward of repeated historical moment magnitude (M
w) 8 earthquake rupture areas offshore of Japan. The SSEs continue for days to several weeks, include both spontaneous and triggered slip, recur every 8 to 15 months, and are accompanied by swarms of low-frequency tremors. We can explain the SSEs with 1 to 4 centimeters of slip along the megathrust, centered 25 to 35 kilometers (km) from the trench (4 to 10 km depth). The SSEs accommodate 30 to 55% of the plate motion, indicating frequent release of accumulated strain near the trench.
Journal Article
Building cratonic keels in Precambrian plate tectonics
2020
The ancient cores of continents (cratons) are underlain by mantle keels—volumes of melt-depleted, mechanically resistant, buoyant and diamondiferous mantle up to 350 kilometres thick, which have remained isolated from the hotter and denser convecting mantle for more than two billion years. Mantle keels formed only in the Early Earth (approximately 1.5 to 3.5 billion years ago in the Precambrian eon); they have no modern analogues
1
–
4
. Many keels show layering in terms of degree of melt depletion
5
–
7
. The origin of such layered lithosphere remains unknown and may be indicative of a global tectonics mode (plate rather than plume tectonics) operating in the Early Earth. Here we investigate the possible origin of mantle keels using models of oceanic subduction followed by arc-continent collision at increased mantle temperatures (150–250 degrees Celsius higher than the present-day values). We demonstrate that after Archaean plate tectonics began, the hot, ductile, positively buoyant, melt-depleted sublithospheric mantle layer located under subducting oceanic plates was unable to subduct together with the slab. The moving slab left behind craton-scale emplacements of viscous protokeel beneath adjacent continental domains. Estimates of the thickness of this sublithospheric depleted mantle show that this mechanism was efficient at the time of the major statistical maxima of cratonic lithosphere ages. Subsequent conductive cooling of these protokeels would produce mantle keels with their low modern temperatures, which are suitable for diamond formation. Precambrian subduction of oceanic plates with highly depleted mantle is thus a prerequisite for the formation of thick layered lithosphere under the continents, which permitted their longevity and survival in subsequent plate tectonic processes.
Modelling reveals how thick diamondiferous continental mantle ‘keels’ were formed only at increased mantle temperatures when the melt-depleted, hot, ductile mantle located under subducting oceanic plates flowed backwards, underplating the continents.
Journal Article
Displacement Above the Hypocenter of the 2011 Tohoku-Oki Earthquake
2011
The 11 March 2011 magnitude 9.0 Tohoku-Oki megathrust earthquake just off the Eastern coast of Japan was one of the largest earthquakes in recorded history. Japan's considerable investment in seismic and geodetic networks allowed for the collection of rapid and reliable data on the mechanics of the earthquake and the devastating tsunami that followed (see the Perspective by Heki ). Sato et al. (p. 1395 , published online 19 May) describe the huge displacements from ocean bottom transponders—previously placed directly above the earthquake's hypocenter—communicating with Global Positioning System (GPS) receivers aboard a ship. Simons et al. (p. 1421 , published online 19 May) used land-based GPS receivers and tsunami gauge measurements to model the kinematics and extent of the earthquake, comparing it to past earthquakes in Japan and elsewhere. Finally, Ide et al. (p. 1426 , published online 19 May) used finite-source imaging to model the evolution of the earthquake's rupture that revealed a strong depth dependence in both slip and seismic energy. These initial results provide fundamental insights into the behavior of rare, very large earthquakes that may aid in preparation and early warning efforts for future tsunamis following subduction zone earthquakes. Detailed geophysical measurements reveal features of the 2011 Tohoku-Oki megathrust earthquake. The moment magnitude ( M w ) = 9.0 2011 Tohoku-Oki mega-thrust earthquake occurred off the coast of northeastern Japan. Combining Global Positioning System (GPS) and acoustic data, we detected very large sea-floor movements associated with this event directly above the focal region. An area with more than 20 meters of horizontal displacement, that is, four times larger than those detected on land, stretches several tens of kilometers long along the trench; the largest amount reaches about 24 meters toward east-southeast just above the hypocenter. Furthermore, nearly 3 meters of vertical uplift occurred, contrary to observed terrestrial subsidence.
Journal Article
ITRF2020 Plate Motion Model
2023
A tectonic Plate Motion Model (PMM) is essential for geodetic applications, while contributing to the understanding of geodynamic processes affecting the Earth's surface. We introduce a PMM derived from the horizontal velocities of 518 sites extracted from the ITRF2020 solution. These sites were chosen away from plate boundaries, Glacial Isostatic Adjustment regions, and other deforming zones. Unlike the ITRF2014‐PMM, which showed no significant Origin Rate Bias (ORB), velocities used to determine the ITRF2020‐PMM exhibit a statistically significant ORB (0.74 ± 0.09 mm/yr along the Z‐component). Users are advised to add the estimated ORB to the horizontal velocities predicted by the ITRF2020‐PMM rotation poles for full consistency with the ITRF2020. However, the predicted vertical velocities resulting from the addition of the ORB should be discarded. The overall precision with which the ITRF2020 velocity field is represented by the rigid ITRF2020‐PMM is at the level of 0.25 mm/yr WRMS. Plain Language Summary The Earth's surface is divided in large and small tectonic plates, which evolve and move slowly over time, resulting in lateral displacements of the ground surface typically of the order of a few cm/yr. Because of the relative motion between tectonic plates, plate boundaries can be either divergent (when two plates move away from each other), convergent (when two plates collide) or transform (when two plates slide past each other). Plate motion models are used to quantify the relative motions of the plates with respect to each other, and are determined using geological data or observations collected by space geodesy instruments distributed over different plates at the Earth's surface. In the latter case, space geodesy observations from the four space geodetic techniques covering more than 40 years of data are analyzed to estimate the long‐term displacements (or velocities) of each instrument in a well defined and self‐consistent global reference frame. The derived velocity field is then used to estimate a comprehensive plate motion model (PMM). This article presents a PMM for 13 tectonic plates based on a subset of the velocity field from the recently released International Terrestrial Reference Frame 2020 (ITRF2020); see https://itrf.ign.fr/en/solutions/ITRF2020. Key Points We derive a plate motion model for 13 tectonic plates from the ITRF2020 horizontal velocity field Built under the rigid‐plate motion hypothesis, the model represents the ITRF2020 velocity field with a precision of 0.25 mm/yr WRMS The residual velocities would show a global northward motion if a translation rate was not included in the inversion model
Journal Article
A record of plume-induced plate rotation triggering subduction initiation
by
Guilmette, Carl
,
McPhee, Peter J.
,
Advokaat, Eldert L.
in
704/2151/210
,
704/2151/562
,
Boundaries
2021
The formation of a global network of plate boundaries surrounding a mosaic of lithospheric fragments was a key step in the emergence of Earth’s plate tectonics. So far, propositions for plate boundary formation are regional in nature; how plate boundaries are created over thousands of kilometres in geologically short periods remains elusive. Here we show from geological observations that a >12,000-km-long plate boundary formed between the Indian and African plates around 105 Myr ago. This boundary comprised subduction segments from the eastern Mediterranean region to a newly established India–Africa rotation pole in the west Indian Ocean, where it transitioned into a ridge between India and Madagascar. We identify coeval mantle plume rise below Madagascar–India as the only viable trigger of this plate rotation. For this, we provide a proof of concept by torque balance modelling, which reveals that the Indian and African cratonic keels were important in determining plate rotation and subduction initiation in response to the spreading plume head. Our results show that plumes may provide a non-plate-tectonic mechanism for large-plate rotation, initiating divergent and convergent plate boundaries far away from the plume head. We suggest that this mechanism may be an underlying cause of the emergence of modern plate tectonics.
A mantle plume induced plate rotation that initiated subduction and rifting along a >12,000 km plate boundary about 105 Myr ago, according to an analysis of geological data and numerical simulations.
Journal Article
A Paleolatitude Calculator for Paleoclimate Studies
by
Sluijs, Appy
,
Langereis, Cor G.
,
Spakman, Wim
in
Archives & records
,
Biomechanical Phenomena
,
Climate
2015
Realistic appraisal of paleoclimatic information obtained from a particular location requires accurate knowledge of its paleolatitude defined relative to the Earth's spin-axis. This is crucial to, among others, correctly assess the amount of solar energy received at a location at the moment of sediment deposition. The paleolatitude of an arbitrary location can in principle be reconstructed from tectonic plate reconstructions that (1) restore the relative motions between plates based on (marine) magnetic anomalies, and (2) reconstruct all plates relative to the spin axis using a paleomagnetic reference frame based on a global apparent polar wander path. Whereas many studies do employ high-quality relative plate reconstructions, the necessity of using a paleomagnetic reference frame for climate studies rather than a mantle reference frame appears under-appreciated. In this paper, we briefly summarize the theory of plate tectonic reconstructions and their reference frames tailored towards applications of paleoclimate reconstruction, and show that using a mantle reference frame, which defines plate positions relative to the mantle, instead of a paleomagnetic reference frame may introduce errors in paleolatitude of more than 15° (>1500 km). This is because mantle reference frames cannot constrain, or are specifically corrected for the effects of true polar wander. We used the latest, state-of-the-art plate reconstructions to build a global plate circuit, and developed an online, user-friendly paleolatitude calculator for the last 200 million years by placing this plate circuit in three widely used global apparent polar wander paths. As a novelty, this calculator adds error bars to paleolatitude estimates that can be incorporated in climate modeling. The calculator is available at www.paleolatitude.org. We illustrate the use of the paleolatitude calculator by showing how an apparent wide spread in Eocene sea surface temperatures of southern high latitudes may be in part explained by a much wider paleolatitudinal distribution of sites than previously assumed.
Journal Article
Major Earthquakes Occur Regularly on an Isolated Plate Boundary Fault
2012
The scarcity of long geological records of major earthquakes, on different types of faults, makes testing hypotheses of regular versus random or clustered earthquake recurrence behavior difficult. We provide a fault-proximal major earthquake record spanning 8000 years on the strike-slip Alpine Fault in New Zealand. Cyclic stratigraphy at Hokuri Creek suggests that the fault ruptured to the surface 24 times, and event ages yield a 0.33 coefficient of variation in recurrence interval. We associate this near-regular earthquake recurrence with a geometrically simple strike-slip fault, with high slip rate, accommodating a high proportion of plate boundary motion that works in isolation from other faults. We propose that it is valid to apply time-dependent earthquake recurrence models for seismic hazard estimation to similar faults worldwide.
Journal Article
Tectonic modes of mantle convection and their implications for Earth’s tectonic evolution based on three-dimensional numerical simulations
2025
Five tectonic modes of mantle convection are obtained and analyzed with three-dimensional numerical models in a spherical shell domain. The five tectonic convective modes are non-plate mobile-lid, plate-like mobile-lid, episodic plate-like mobile-lid, episodic stagnant-lid, and stagnant-lid convective modes, respectively. The typical characteristics of these five tectonic modes and their numerical classification criteria based on plateness, mobility, and their standard deviations are presented and discussed. The results show that the yield stress of the lithosphere has profound effects on the tectonic convective modes. With the gradual increase of yield stress, the tectonic mode of mantle convection changes from one to another sequentially through the aforementioned five modes. Additionally, as the Rayleigh number increases, the range of yield stress for the platelike mobile-lid convective mode decreases, and the dimensionless transition stress between different tectonic modes increases. Specifically, the dimensional transition stress between the non-plate mobile-lid convective mode and plate-like mobile-lid convective mode increases with the increase of Rayleigh number, but decreases between other tectonic modes. Furthermore, we find that the transition stress between different tectonic modes is inversely proportional to the internal heating rate, with the transition stress decreasing as the internal heating rate increases. The fitting analysis of the transition stress between tectonic modes shows that Earth’s current plate tectonics correspond to a lithospheric yield stress of 150–250 MPa, which aligns with the strength of serpentinized mantle rock determined by experimental petrography. If the Archean mantle was 300°C warmer than it is today, then the Earth was in an episodic stagnant-lid convective mode. The tectonic evolution of the Earth’s surface is closely related to the lithospheric strength and the process of thermal evolution. If the lithospheric strength was only 150 MPa, plate tectonics in the early mantle rapid cooling model would have begun before 3.8 Ga, and plate tectonics in the late mantle rapid cooling model would have begun at approximately 1.5 Ga. However, at a lithospheric strength of 200 MPa, plate tectonics in the late mantle rapid cooling model would have begun later than 0.95 Ga, and plate tectonics in the early mantle rapid cooling model would have begun at approximately 2 Ga. The early Earth was in the episodic stagnant-lid convective mode, which means that subduction might still have occurred at that time. The presence of the episodic plate-like mobile-lid convective mode in Earth’s later history indicates that there might also have been intermittent surface stagnation during plate tectonics, which may provide an explanation for the quiet period of tectonic activity at approximately 1.0 Ga on Earth. This indicates that tectonic inactivity during a geological period is not an indicator that plate tectonics did not begin.
Journal Article