Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
72
result(s) for
"temperature and humidity pretreatment"
Sort by:
Free drying shrinkage performance of Pinus sylvestris L. under different temperature and humidity conditions
2024
Efficient utilization of wood is inseparable from high-quality drying, and analysis of its free shrinkage performance is essential to optimize the drying process. This study took Pinus sylvestris L. sawn timber (500 mm×200 mm×50 mm) as the research object and adopted the image analysis method to analyze the influence rules of different temperatures and axial positions of the test material on the free dry shrinkage coefficient of each layer of specimens in the thickness direction. The free shrinkage coefficients of each layer in the thickness direction of the test material decreased from the maximum value of the first layer near the tangential direction (0.282%, 0.275%, 0.267%, at 60 °C, 80 °C, and 100 °C, respectively) to the minimum value of the ninth layer near the radial direction (0.248%, 0.249%, 0.227%); except for the near-radial layers, when temperature increased from 60 °C to 100 °C the free shrinkage coefficients of other representative layers decreased with increased temperature. The first layer’s free shrinkage coefficient decreased from 0.282% to 0.267%, and the fifth layer decreased from 0.264% to 0.243%. The difference of free shrinkage coefficients between corresponding layers at different axial positions of the test material was less than 0.017%, and the size stability of the corresponding layers at axial positions was high.
Journal Article
Melatonin Improved Waterlogging Tolerance in Alfalfa (Medicago sativa) by Reprogramming Polyamine and Ethylene Metabolism
2019
Melatonin (MT), polyamines (PAs), and ethylene have been suggested to play key roles in plant growth and development in response to environmental abiotic stresses. However, the effect of melatonin on polyamine and ethylene metabolism under waterlogging stress has rarely been elucidated. The main purpose of this study was to investigate the effect of melatonin pretreatment on waterlogging stress in alfalfa. The experiment was arranged into four treatment groups control with water pretreatment (CK-MT), control with melatonin pretreatment (CK+MT), waterlogging pretreated with water (WL-MT) and waterlogging pretreated with melatonin (WL+MT), with three replications. Six-week-old alfalfa seedlings were pretreated with 100 μM melatonin and exposed to waterlogging stress for 10 days. Plant growth rate, different physiological characteristics, and gene expression level were measured. Results showed that waterlogging induced melatonin accumulation, and melatonin pretreatment increased endogenous MT levels for the control and water-logged plants. Waterlogging stress caused a significant reduction in plant growth, chlorophyll content, photochemical efficiency (Fv/Fm) and net photosynthetic rate (P
), while also causing increased leaf electrolyte leakage (EL) and malondialdehyde (MDA) content. Pretreatment with melatonin alleviated the waterlogging-induced damage and reduction in plant growth, chlorophyll content, Fv/Fm and P
. Waterlogging stress significantly increased leaf polyamines (Put, Spd, Spm) and ethylene levels, and the increased PAs and ethylene levels are coupled with higher metabolic enzymes and gene expressions. While pretreatment with melatonin further increased Put, Spd and Spm levels, it also decreased ethylene levels under waterlogging, and those increased PAs levels or decreased ethylene levels are regulated by the metabolic enzymes and gene expressions. The results in this study provide more comprehensive insight into the physiological and molecular mechanisms of melatonin-improved waterlogging tolerance in alfalfa. Furthermore, they suggested that melatonin improved waterlogging tolerance in alfalfa at least partially by reprogramming ethylene and PA biosynthesis, attributable to the increased PAs and decreased ethylene levels, which leads to more enhanced membrane stability and photosynthesis as well as less leaf senescence caused by ethylene.
Journal Article
Experimental Comparison of Ventilation Strategies for Condensation Risk in Underground Wheat Granaries
2025
Underground granaries offer natural insulation for long-term grain storage, yet spatial heterogeneity in temperature and humidity can drive condensation and degrade grain quality. To address this issue, mechanical ventilation is commonly employed, yet evidence remains limited on whether pretreating the inlet air before ventilation can further reduce the risk of condensation. In order to bridge this gap, a custom-designed small-scale underground granary was employed, in which temperature and relative humidity of the grain pile, surrounding soil, and ambient air were monitored at 28 sampling points. The effectiveness of mechanical ventilation and ventilation pretreatment in reducing condensation was also assessed. Results demonstrated that during static storage, the granary was minimally affected by external conditions. Yet, a high temperature and humidity area developed at the top of the grain pile over the 24-day period of static storage. Under mechanical ventilation, local relative humidity decreased but grain temperature still responded to ambient conditions. In contrast, ventilation pretreatment stabilized inlet air, lowered peak grain temperature by 1 °C, and improved relative humidity reduction from 6% to 12%. This produced a more uniform temperature–humidity profile and markedly reduced condensation risk.
Journal Article
Effects of Humidity Pretreatment Devices on the Loss of HCl Gas Emitted from Industrial Stacks
2022
A high humidity at a high temperature presents a common challenge in monitoring the air pollutants emitted from stationary sources. Thus, humidity removal is a pivotal issue. In this study, the effect of humidity pretreatment devices (HPDs) on hydrogen chloride (HCl) gas emitted from an incinerator stack was investigated. A conventional cooler (HPD_CL), and poly-tube (HPD_NP) and single-tube (HPD_NS) Nafion™ dryers were used as HPDs in this study. HCl concentrations varied at five and 10 parts per million in volume (ppmv). Low (i.e., ~4%) and high (i.e., ~17%) humidities were generated at 180 °C. The removal efficiencies of humidity and the loss rates of HCl by the devices were determined. The removal efficiencies of humidity by HPD_CL and the two dryers were found to be similar, at approximately 85% at a low humidity and 95% at a high humidity. In terms of HCl loss rates, HPD_CL revealed the highest loss rates in all conditions (i.e., >95%), followed by HPD_NP and HPD_NS. At normal room temperature (i.e., 25 °C), the HCl loss rates of HPD_NP were >40% at a low humidity and >70% at a high humidity, while those of HPD_NS were >10% at a low humidity and >60% at a high humidity. The performance of the two dryers improved when they were heated to 80 °C. However, this temperature caused damage to the dryers, which reduced their lifetime.
Journal Article
The Influence of Pulsed Electric Field and Air Temperature on the Course of Hot-Air Drying and the Bioactive Compounds of Apple Tissue
by
Trusinska, Magdalena
,
Wiktor, Artur
,
Ciurzynska, Agnieszka
in
Antioxidants
,
Apple
,
Ascorbic Acid - chemistry
2023
Drying is one of the oldest methods of obtaining a product with a long shelf-life. Recently, this process has been modified and accelerated by the application of pulsed electric field (PEF); however, PEF pretreatment has an effect on different properties—physical as well as chemical. Thus, the aim of this study was to investigate the effect of pulsed electric field pretreatment and air temperature on the course of hot air drying and selected chemical properties of the apple tissue of Gloster variety apples. The dried apple tissue samples were obtained using a combination of PEF pretreatment with electric field intensity levels of 1, 3.5, and 6 kJ/kg and subsequent hot air drying at 60, 70, and 80 °C. It was found that a higher pulsed electric field intensity facilitated the removal of water from the apple tissue while reducing the drying time. The study results showed that PEF pretreatment influenced the degradation of bioactive compounds such as polyphenols, flavonoids, and ascorbic acid. The degradation of vitamin C was higher with an increase in PEF pretreatment intensity level. PEF pretreatment did not influence the total sugar and sorbitol contents of the dried apple tissue as well as the FTIR spectra. According to the optimization process and statistical profiles of approximated values, the optimal parameters to achieve high-quality dried apple tissue in a short drying time are PEF pretreatment application with an intensity of 3.5 kJ/kg and hot air drying at a temperature of 70 °C.
Journal Article
Protective Effect of Organic Selenium on Oxidative Damage and Inflammatory Reaction of Rabbit Kidney Induced by T-2 Toxin
2021
T-2 toxin is a member of a class of mycotoxins produced by a variety of Fusarium species under appropriate temperature and humidity conditions and is a common contaminant in food and feedstuffs of cereal origin. Selenium is an indispensable element in animals, regulates a variety of biological functions of the body, and can antagonize metal and mycotoxin poisoning to a certain extent. However, the effect of selenium on kidney injury induced by T-2 toxin has not been reported. In this study, 50 New Zealand rabbits were divided into 5 groups (the control group, T-2 toxin group, low-dose Se + T-2 toxin group, medium-dose Se + T-2 toxin group, and high-dose Se + T-2 toxin group). Rabbits were examined after oral administration of different doses of selenomethionine (SeMet) for 21 days and after perfusion with 0.4 mg/kg T-2 toxin (or the same dose of olive oil in the control group) for 5 days. We found that T-2 toxin induced kidney function damage and increased the levels of ROS and the contents of inflammatory factors. Renal structure was pathologically damaged. However, we found that after pretreatment with 0.2 mg/kg SeMet, oxidative stress, the inflammatory response, and pathological damage induced by T-2 toxin were attenuated. The results indicate that a low dose (0.2 mg/kg) of SeMet effectively reversed T-2 toxin–induced kidney injury in rabbits.
Journal Article
Fabrication of PVA–Silica Sol Wood Composites via Delignification and Freezing Pretreatment
by
Cai, Taoyang
,
Yang, Hong
,
Zhang, Chang
in
Carbon sequestration
,
Chemical elements
,
Compressive strength
2024
The efficient exploitation of planted fast-growing wood is crucial for enhancing wood resource utilization. In this study, the fast-growing poplar wood was modified by in situ impregnation through vacuum impregnation with polyvinyl alcohol and nano-silica sol as impregnation modifiers, combined with delignification–freezing pretreatment. The samples were characterized by FTIR, XRD, SEM, and the universal mechanical testing machine. The results showed that the wrinkle deformation and cracking of the wood blocks were greatly alleviated after the delignification–freezing pretreatment and the polyvinyl alcohol and nano-silica sol were successfully integrated into the wood. The resulting polyvinyl alcohol–silica sol poplar composites exhibited about 216%, 80% and 43% higher compressive strength with respect to delignified wood, natural wood and impregnated natural wood, respectively, thereby demonstrating superior mechanical properties and potential opportunities for value-added and efficient utilization of low-quality wood.
Journal Article
Regulation of seed germination by diurnally alternating temperatures in disturbance-adapted banana crop wild relatives (Musa acuminata)
2020
Seed conservation of banana crop wild relatives (Musa L. spp.) is limited because of lack of knowledge about their germination ecology. Musa acuminata Colla, the most important banana crop wild relative, is distributed in tropical and subtropical Asian and Pacific rainforests and colonizes disturbed sites. The role of temperature in stimulating/inhibiting germination to detect disturbance when canopy gaps are formed is not well known. We assessed seed germination thermal requirements of three subspecies of M. acuminata using nine seed accessions which had been stored in the Millennium Seed Bank. Diurnally alternating temperature cycles were almost completely essential for germination compared with constant temperatures. Germination was optimal when the upper temperature of a diurnal cycle was at 35°C; the lower temperature of the cycle was less important. Subspecies occurrence coordinates were used to extract climate temperature data which were then compared against the temperature requirements for germination from our experiment results. Maximum temperatures of the warmest month across subspecies ranges were close to but below optimal germination temperatures, as were diurnal ranges, suggesting soil-warming at the micro-climate level following gap creation is important for M. acuminata seed germination. Additionally, pre-treatment for 3 months at 60% relative humidity at constant 25°C improved germination from 14 ± 10 (mean, standard deviation) to 41 ± 29% suggesting a period in the soil seed bank under the canopy may increase sensitivity to alternating temperature cycles. Overall viability was low (49 ± 28%), and considerable variance was caused by the different accessions. Germination remained somewhat inconsistent.
Journal Article
Research on the Characteristics of Braided String Based on Domestic Aramid Fiber for Semi-rigid Substrate of Solar Array
2024
The substrate serves as a mounting base for the solar cells of the space-based solar array, and the “rigid frame of carbon fiber composite + tensioned mesh structure based on the braided string” constitutes the primary structure of the semi-rigid substrate of the large DFH-5 satellite. Tests and experiments have been conducted in four key areas: the creep characteristics of the braided string and its core under different loads, the creep characteristics of the braided string’s core due to changes in humidity and temperature, and the creep characteristics of the braided string itself due to temperature changes. The results show that the elongation of the braided string is twice that of its core under the same load. To reduce the stress relaxation of the tensioned braided string, it is necessary to perform pre-treatment to mitigate creep in advance. An increase in humidity can cause tension relaxation in the tensioned braided string. To mitigate this, a pre-tensioned core of the braided string can be utilized, and environmental control on the ground is recommended to reduce the impact of humidity on tension relaxation. Thermal pre-treatment is advised, as high temperatures can lead to partial changes in the properties or thermal stress release of aramid III fiber, resulting in the relaxation of the tensioned braided string and irreversible changes. The creep performance of the braided string’s core, however, is not affected by low temperatures. Through these experiments, the creep characteristics and pre-treatment guidelines for the braided string under different environmental conditions have been established, providing a foundation for the large-scale application of this structure in semi-rigid substrates of solar arrays.
Journal Article
Comparison of Field and Laboratory Wet Soil Spectra in the Vis-NIR Range for Soil Organic Carbon Prediction in the Absence of Laboratory Dry Measurements
by
Klement, Aleš
,
Borůvka, Luboš
,
Biney, James Kobina Mensah
in
accuracy
,
complement
,
data collection
2020
Spectroscopy has demonstrated the ability to predict specific soil properties. Consequently, it is a promising avenue to complement the traditional methods that are costly and time-consuming. In the visible-near infrared (Vis-NIR) region, spectroscopy has been widely used for the rapid determination of organic components, especially soil organic carbon (SOC) using laboratory dry (lab-dry) measurement. However, steps such as collecting, grinding, sieving and soil drying at ambient (room) temperature and humidity for several days, which is a vital process, make the lab-dry preparation a bit slow compared to the field or laboratory wet (lab-wet) measurement. The use of soil spectra measured directly in the field or on a wet sample remains challenging due to uncontrolled soil moisture variations and other environmental conditions. However, for direct and timely prediction and mapping of soil properties, especially SOC, the field or lab-wet measurement could be an option in place of the lab-dry measurement. This study focuses on comparison of field and naturally acquired laboratory measurement of wet samples in Visible (VIS), Near-Infrared (NIR) and Vis-NIR range using several pretreatment approaches including orthogonal signal correction (OSC). The comparison was concluded with the development of validation models for SOC prediction based on partial least squares regression (PLSR) and support vector machine (SVMR). Nonetheless, for the OSC implementation, we use principal component regression (PCR) together with PLSR as SVMR is not appropriate under OSC. For SOC prediction, the field measurement was better in the VIS range with R2CV = 0.47 and RMSEPcv = 0.24, while in Vis-NIR range the lab-wet measurement was better with R2CV = 0.44 and RMSEPcv = 0.25, both using the SVMR algorithm. However, the prediction accuracy improves with the introduction of OSC on both samples. The highest prediction was obtained with the lab-wet dataset (using PLSR) in the NIR and Vis-NIR range with R2CV = 0.54/0.55 and RMSEPcv = 0.24. This result indicates that the field and, in particular, lab-wet measurements, which are not commonly used, can also be useful for SOC prediction, just as the lab-dry method, with some adjustments.
Journal Article