Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
28
result(s) for
"terminal Schwann cell"
Sort by:
The structure and organization of lanceolate mechanosensory complexes at mouse hair follicles
2014
In mouse hairy skin, lanceolate complexes associated with three types of hair follicles, guard, awl/auchene and zigzag, serve as mechanosensory end organs. These structures are formed by unique combinations of low-threshold mechanoreceptors (LTMRs), Aβ RA-LTMRs, Aδ-LTMRs, and C-LTMRs, and their associated terminal Schwann cells (TSCs). In this study, we investigated the organization, ultrastructure, and maintenance of longitudinal lanceolate complexes at each hair follicle subtype. We found that TSC processes at hair follicles are tiled and that individual TSCs host axonal endings of more than one LTMR subtype. Electron microscopic analyses revealed unique ultrastructural features of lanceolate complexes that are proposed to underlie mechanotransduction. Moreover, Schwann cell ablation leads to loss of LTMR terminals at hair follicles while, in contrast, TSCs remain associated with hair follicles following skin denervation in adult mice and, remarkably, become re-associated with newly formed axons, indicating a TSC-dependence of lanceolate complex maintenance and regeneration in adults. Many mammals, such as cats, mice, and sea lions, have long whiskers that are particularly sensitive to touch. However, the hairs that cover the skin of most mammals are also important touch detectors. These hairs grow from follicles that are connected to the ends of the nerve cells that detect and convey touch information to the central nervous system. In mice, three main types of hair follicle—guard hairs, awl hairs, and zigzag hairs—are associated with combinations of three types of nerve endings. Much remains to be understood about how hair follicles and nerve cell endings—which are wrapped by cells called terminal Schwann cells—interact via structures called lanceolate complexes. Now, using a combination of genetics, microscopy and surgical procedures, Li and Ginty have studied these structures in unprecedented detail, and revealed some intriguing structural differences among the three types of hair follicles. Zigzag follicles—which make up the fur undercoat—are associated with fewer terminal Schwann cells than are awl follicles, whilst guard hair follicles have the most. High-resolution analyses revealed that distinct combinations of sensory nerve endings were associated with different types of hair follicle cells—which may underlie the unique responses of the different hair follicle types when the hairs are deflected. Furthermore, an individual terminal Schwann cell can be associated with more than one type of nerve ending, adding another layer of intricacy to the detection of hair movements. Killing the terminal Schwann cells in mice caused a complete loss of sensory nerve endings at hair follicles, which suggests that these cells are essential for maintaining the connection between the hair follicles and nerve cell endings. Interestingly, surgically removing nerve endings from the skin did not lead to a loss of terminal Schwann cells, and the nerve endings eventually grew back and reconnected with the hair follicles. In addition to shedding new light on the structures of lanceolate complexes in different types of hair follicles, the findings of Li and Ginty suggest that terminal Schwann cells maintain the nerve endings at hair follicles and guide their regeneration after damage. Uncovering the molecular mechanisms that control these processes represents an important next step in this research.
Journal Article
Neuromuscular Junction Dysfunction in Amyotrophic Lateral Sclerosis
by
Verma, Sagar
,
Taneja, Vibha
,
Gourie-Devi, Mandaville
in
Amyotrophic lateral sclerosis
,
Amyotrophic Lateral Sclerosis - pathology
,
Biomedical and Life Sciences
2022
Amyotrophic lateral sclerosis (ALS) is a fatal neurological disorder characterized by progressive degeneration of motor neurons leading to skeletal muscle denervation. Earlier studies have shown that motor neuron degeneration begins in motor cortex and descends to the neuromuscular junction (NMJ) in a dying forward fashion. However, accumulating evidences support that ALS is a distal axonopathy where early pathological changes occur at the NMJ, prior to onset of clinical symptoms and propagates towards the motor neuron cell body supporting “dying back” hypothesis. Despite several evidences, series of events triggering NMJ disassembly in ALS are still obscure. Neuromuscular junction is a specialized tripartite chemical synapse which involves a well-coordinated communication among the presynaptic motor neuron, postsynaptic skeletal muscle, and terminal Schwann cells. This review provides comprehensive insight into the role of NMJ in ALS pathogenesis. We have emphasized the molecular alterations in cellular components of NMJ leading to loss of effective neuromuscular transmission in ALS. Further, we provide a preview into research involved in exploring NMJ as potential target for designing effective therapies for ALS.
Journal Article
Specific labeling of synaptic schwann cells reveals unique cellular and molecular features
by
Vaughan, Sydney K
,
Settlage, Robert E
,
Valdez, Gregorio
in
Animals
,
Antigens - metabolism
,
astrocytes
2020
Perisynaptic Schwann cells (PSCs) are specialized, non-myelinating, synaptic glia of the neuromuscular junction (NMJ), that participate in synapse development, function, maintenance, and repair. The study of PSCs has relied on an anatomy-based approach, as the identities of cell-specific PSC molecular markers have remained elusive. This limited approach has precluded our ability to isolate and genetically manipulate PSCs in a cell specific manner. We have identified neuron-glia antigen 2 (NG2) as a unique molecular marker of S100β+ PSCs in skeletal muscle. NG2 is expressed in Schwann cells already associated with the NMJ, indicating that it is a marker of differentiated PSCs. Using a newly generated transgenic mouse in which PSCs are specifically labeled, we show that PSCs have a unique molecular signature that includes genes known to play critical roles in PSCs and synapses. These findings will serve as a springboard for revealing drivers of PSC differentiation and function.
Journal Article
ALS as a distal axonopathy: molecular mechanisms affecting neuromuscular junction stability in the presymptomatic stages of the disease
by
de Winter, Fred
,
Moloney, Elizabeth B.
,
Verhaagen, Joost
in
Amyotrophic lateral sclerosis
,
Amyotrophic lateral sclerosis (ALS)
,
Axon guidance
2014
Amyotrophic Lateral Sclerosis (ALS) is being redefined as a distal axonopathy, in that many molecular changes influencing motor neuron degeneration occur at the neuromuscular junction (NMJ) at very early stages of the disease prior to symptom onset. A huge variety of genetic and environmental causes have been associated with ALS, and interestingly, although the cause of the disease can differ, both sporadic and familial forms of ALS show a remarkable similarity in terms of disease progression and clinical manifestation. The NMJ is a highly specialized synapse, allowing for controlled signaling between muscle and nerve necessary for skeletal muscle function. In this review we will evaluate the clinical, animal experimental and cellular/molecular evidence that supports the idea of ALS as a distal axonopathy. We will discuss the early molecular mechanisms that occur at the NMJ, which alter the functional abilities of the NMJ. Specifically, we focus on the role of axon guidance molecules on the stability of the cytoskeleton and how these molecules may directly influence the cells of the NMJ in a way that may initiate or facilitate the dismantling of the neuromuscular synapse in the presymptomatic stages of ALS.
Journal Article
Schwann Cells in Neuromuscular Disorders: A Spotlight on Amyotrophic Lateral Sclerosis
by
Moss, Kathryn R.
,
Saxena, Smita
in
Amyotrophic lateral sclerosis
,
Amyotrophic Lateral Sclerosis - pathology
,
Animals
2025
Amyotrophic Lateral Sclerosis (ALS) is a complex neurodegenerative disease primarily affecting motor neurons, leading to progressive muscle atrophy and paralysis. This review explores the role of Schwann cells in ALS pathogenesis, highlighting their influence on disease progression through mechanisms involving demyelination, neuroinflammation, and impaired synaptic function. While Schwann cells have been traditionally viewed as peripheral supportive cells, especially in motor neuron disease, recent evidence indicates that they play a significant role in ALS by impacting motor neuron survival and plasticity, influencing inflammatory responses, and altering myelination processes. Furthermore, advancements in understanding Schwann cell pathology in ALS combined with lessons learned from studying Charcot–Marie–Tooth disease Type 1 (CMT1) suggest potential therapeutic strategies targeting these cells may support nerve repair and slow disease progression. Overall, this review aims to provide comprehensive insights into Schwann cell classification, physiology, and function, underscoring the critical pathological contributions of Schwann cells in ALS and suggests new avenues for targeted therapeutic interventions aimed at modulating Schwann cell function in ALS.
Journal Article
Functional regeneration of the murine neuromuscular synapse relies on long-lasting morphological adaptations
by
Zelada, Diego
,
Bermedo-García, Francisca
,
Martínez, Esperanza
in
Adaptation
,
Animal models
,
Biomedical and Life Sciences
2022
Background
In a broad variety of species, muscle contraction is controlled at the neuromuscular junction (NMJ), the peripheral synapse composed of a motor nerve terminal, a muscle specialization, and non-myelinating terminal Schwann cells. While peripheral nerve damage leads to successful NMJ reinnervation in animal models, muscle fiber reinnervation in human patients is largely inefficient. Interestingly, some hallmarks of NMJ denervation and early reinnervation in murine species, such as fragmentation and poly-innervation, are also phenotypes of aged NMJs or even of unaltered conditions in other species, including humans. We have reasoned that rather than features of NMJ decline, such cellular responses could represent synaptic adaptations to accomplish proper functional recovery. Here, we have experimentally tackled this idea through a detailed comparative study of the short- and long-term consequences of irreversible (chronic) and reversible (partial) NMJ denervation in the convenient cranial
levator auris longus
muscle.
Results
Our findings reveal that irreversible muscle denervation results in highly fragmented postsynaptic domains and marked ectopic acetylcholine receptor clustering along with significant terminal Schwann cells sprouting and progressive detachment from the NMJ. Remarkably, even though reversible nerve damage led to complete reinnervation after 11 days, we found that more than 30% of NMJs are poly-innervated and around 65% of postsynaptic domains are fragmented even 3 months after injury, whereas synaptic transmission is fully recovered two months after nerve injury. While postsynaptic stability was irreversibly decreased after chronic denervation, this parameter was only transiently affected by partial NMJ denervation. In addition, we found that a combination of morphometric analyses and postsynaptic stability determinations allows discriminating two distinct forms of NMJ fragmentation, stable-smooth and unstable-blurred, which correlate with their regeneration potential.
Conclusions
Together, our data unveil that reversible nerve damage imprints a long-lasting reminiscence in the NMJ that results in the rearrangement of its cellular components. Instead of being predictive of NMJ decline, these traits may represent an efficient adaptive response for proper functional recovery. As such, these features are relevant targets to be considered in strategies aimed to restore motor function in detrimental conditions for peripheral innervation.
Journal Article
Cholinesterases in Tripartite Neuromuscular Synapse
by
Petrov, Konstantin A.
,
Proskurina, Svetlana E.
,
Krejci, Eric
in
Acetylcholine
,
Acetylcholine receptors (nicotinic)
,
Acetylcholinesterase
2021
The neuromuscular junction (NMJ) is a tripartite synapse in which not only presynaptic and post-synaptic cells participate in synaptic transmission, but also terminal Schwann cells (TSC). Acetylcholine (ACh) is the neurotransmitter that mediates the signal between the motor neuron and the muscle but also between the motor neuron and TSC. ACh action is terminated by acetylcholinesterase (AChE), anchored by collagen Q (ColQ) in the basal lamina of NMJs. AChE is also anchored by a proline-rich membrane anchor (PRiMA) to the surface of the nerve terminal. Butyrylcholinesterase (BChE), a second cholinesterase, is abundant on TSC and anchored by PRiMA to its plasma membrane. Genetic studies in mice have revealed different regulations of synaptic transmission that depend on ACh spillover. One of the strongest is a depression of ACh release that depends on the activation of α7 nicotinic acetylcholine receptors (nAChR). Partial AChE deficiency has been described in many pathologies or during treatment with cholinesterase inhibitors. In addition to changing the activation of muscle nAChR, AChE deficiency results in an ACh spillover that changes TSC signaling. In this mini-review, we will first briefly outline the organization of the NMJ. This will be followed by a look at the role of TSC in synaptic transmission. Finally, we will review the pathological conditions where there is evidence of decreased AChE activity.
Journal Article
Gene therapy ameliorates neuromuscular pathology in CLN3 disease
by
Cooper, Jonathan D.
,
Hunter, Daniel A.
,
Jansen, Matthew J.
in
AAV9 gene therapy
,
Animals
,
Antibodies
2025
CLN3 disease is a neuronopathic lysosomal storage disorder that severely impacts the central nervous system (CNS) while also inducing notable peripheral neuromuscular symptoms. Although considerable attention has been directed towards the neurodegenerative consequences within the CNS, the involvement of peripheral tissues, including skeletal muscles and their innervation, has been largely neglected. We hypothesized that, CLN3 deficiency could directly influence peripheral nerves and investigated the neuromuscular system in
Cln3
Δex7/8
mice. Our study found no overt loss of sciatic nerve axons or demyelination in 18-month-old
Cln3
Δex7/8
mice at disease endstage, but a marked reduction of terminal Schwann cells (tSCs) at lower limb neuromuscular junctions (NMJs), culminating in progressive denervation of these NMJs which appeared abnormal. This led us to investigate skeletal muscle where we found significant myofiber atrophy and decreased and misplaced myofibril nuclei. Similar myopathic alterations were present in a muscle biopsy from an 8-year-old human CLN3 patient shortly after diagnosis. To assess a potential therapeutic intervention, we administered intravenous gene therapy using AAV9.hCLN3 to neonatal
Cln3
Δex7/8
mice, which at disease endstage, entirely prevented tSC loss and NMJ abnormalities, while also averting skeletal muscle atrophy. These findings underscore the underappreciated, yet substantial effects of CLN3 disease beyond the CNS, highlighting peripheral neuromuscular pathologies as novel features of this disorder. Our findings also indicate that these manifestations could be amenable to treatment via gene therapy, opening new therapeutic strategies in the management of CLN3 disease.
Journal Article
Absence of T-box transcription factor 21 limits neuromuscular junction recovery after nerve injury in T-bet-knockout mice
by
Jablonka-Shariff, Albina
,
Broberg, Curtis
,
Snyder-Warwick, Alison K.
in
Anesthesia
,
Chemokines
,
Force
2025
Terminal Schwann cells (tSCs), at the neuromuscular junction (NMJ), play critical roles in the repair of motor axon terminals at muscle, and rebuild neuronal signaling following nerve injury. Knowledge of mediators impacting tSCs post-nerve injury and in disease may guide beneficial therapies to improve motor outcomes. We previously found T-box transcription factor 21 (TBX21/TBET), classically associated with T-helper1 cells and immune cell recruitment, is expressed in tSCs at the mouse NMJ. The purpose of this study was to examine effects of
absence during NMJ regeneration following peripheral nerve injury.
Wildtype (WT) and
(
) mice underwent sciatic nerve transection and immediate repair. Functional muscle recovery assessment was performed with muscle force testing on mice at 2-, 3-, 4-, and 6-week (wks) and 6 months after nerve injury repair. Morphometric analyses of NMJ reinnervation, tSC number, and tSC processes were evaluated. Full NMJ reinnervation was defined as ≥75% coverage of endplates by axons. A minimum of three mice were evaluated in each group, and 50-100 NMJs were evaluated per mouse.
mice had significantly diminished muscle function compared to WT mice at every time point beyond 3 weeks.
mice showed just over half of the muscle force generated by WT mice at 4 weeks and 6 weeks post-injury and repair. By 6 months,
mice generated only 84.1% the muscle force of WT mice.
mice showed significantly decreased levels of fully reinnervated NMJs compared to WT mice at each time point tested.
mice also showed a lower number of tSCs with reduced cytoplasmic processes beyond NMJ area and lower number of immune cells during process of NMJ regeneration.
Our findings show that the
transcription factor promotes NMJ reinnervation to regain muscle function following nerve injury.
Journal Article
Ultrasound Stimulation Inhibits Morphological Degeneration of Motor Endplates in the Denervated Skeletal Muscle of Rats
2022
Recovery of motor function after peripheral nerve injury requires treatment of the neuromuscular junction (NMJ), as well as the injured nerve and skeletal muscle. The purpose of this study was to examine the effects of ultrasound (US) stimulation on NMJ degeneration after denervation using a rat model of peroneal nerve transection. Twelve-week-old male Wistar rats were randomly assigned to 3 groups: US stimulation, sham stimulation, and intact. US or sham stimulation was performed on the left tibialis anterior (TA) muscle starting the day after peroneal nerve transection for 5 minutes daily under anesthesia. Four weeks later, the number and morphology of the motor endplates were analyzed to assess NMJ in the TA muscle. The endplates were classified as normal, partially fragmented, or fully fragmented for morphometric analysis. In addition, the number of terminal Schwann cells (tSCs) per endplate and percentage of endplates with tSCs (tSC retention percentage) were calculated to evaluate the effect of tSCs on NMJs. Our results showed that endplates degenerated 4 weeks after transection, with a decrease in the normal type and an increase in the fully fragmented type in both the US and sham groups compared to the intact group. Furthermore, the US group showed significant suppression of the normal type decrease and a fully fragmented type increase compared to the sham group. These results suggest that US stimulation inhibits endplate degeneration in denervated TA muscles. In contrast, the number of endplates and tSC and tSC retention percentages were not significantly different between the US and sham groups. Further investigations are required to determine the molecular mechanisms by which US stimulation suppresses degeneration.
Journal Article