Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Source
    • Language
3,221 result(s) for "thermal remote sensing"
Sort by:
Estimation of Soil Moisture from Optical and Thermal Remote Sensing: A Review
As an important parameter in recent and numerous environmental studies, soil moisture (SM) influences the exchange of water and energy at the interface between the land surface and atmosphere. Accurate estimate of the spatio-temporal variations of SM is critical for numerous large-scale terrestrial studies. Although microwave remote sensing provides many algorithms to obtain SM at large scale, such as SMOS and SMAP etc., resulting in many data products, they are almost low resolution and not applicable in small catchment or field scale. Estimations of SM from optical and thermal remote sensing have been studied for many years and significant progress has been made. In contrast to previous reviews, this paper presents a new, comprehensive and systematic review of using optical and thermal remote sensing for estimating SM. The physical basis and status of the estimation methods are analyzed and summarized in detail. The most important and latest advances in soil moisture estimation using temporal information have been shown in this paper. SM estimation from optical and thermal remote sensing mainly depends on the relationship between SM and the surface reflectance or vegetation index. The thermal infrared remote sensing methods uses the relationship between SM and the surface temperature or variations of surface temperature/vegetation index. These approaches often have complex derivation processes and many approximations. Therefore, combinations of optical and thermal infrared remotely sensed data can provide more valuable information for SM estimation. Moreover, the advantages and weaknesses of different approaches are compared and applicable conditions as well as key issues in current soil moisture estimation algorithms are discussed. Finally, key problems and suggested solutions are proposed for future research.
Satellite Remote Sensing of Surface Urban Heat Islands: Progress, Challenges, and Perspectives
The surface urban heat island (SUHI), which represents the difference of land surface temperature (LST) in urban relativity to neighboring non-urban surfaces, is usually measured using satellite LST data. Over the last few decades, advancements of remote sensing along with spatial science have considerably increased the number and quality of SUHI studies that form the major body of the urban heat island (UHI) literature. This paper provides a systematic review of satellite-based SUHI studies, from their origin in 1972 to the present. We find an exponentially increasing trend of SUHI research since 2005, with clear preferences for geographic areas, time of day, seasons, research foci, and platforms/sensors. The most frequently studied region and time period of research are China and summer daytime, respectively. Nearly two-thirds of the studies focus on the SUHI/LST variability at a local scale. The Landsat Thematic Mapper (TM)/Enhanced Thematic Mapper (ETM+)/Thermal Infrared Sensor (TIRS) and Terra/Aqua Moderate Resolution Imaging Spectroradiometer (MODIS) are the two most commonly-used satellite sensors and account for about 78% of the total publications. We systematically reviewed the main satellite/sensors, methods, key findings, and challenges of the SUHI research. Previous studies confirm that the large spatial (local to global scales) and temporal (diurnal, seasonal, and inter-annual) variations of SUHI are contributed by a variety of factors such as impervious surface area, vegetation cover, landscape structure, albedo, and climate. However, applications of SUHI research are largely impeded by a series of data and methodological limitations. Lastly, we propose key potential directions and opportunities for future efforts. Besides improving the quality and quantity of LST data, more attention should be focused on understudied regions/cities, methods to examine SUHI intensity, inter-annual variability and long-term trends of SUHI, scaling issues of SUHI, the relationship between surface and subsurface UHIs, and the integration of remote sensing with field observations and numeric modeling.
Derivation of Land Surface Temperature for Landsat-8 TIRS Using a Split Window Algorithm
Land surface temperature (LST) is one of the most important variables measured by satellite remote sensing. Public domain data are available from the newly operational Landsat-8 Thermal Infrared Sensor (TIRS). This paper presents an adjustment of the split window algorithm (SWA) for TIRS that uses atmospheric transmittance and land surface emissivity (LSE) as inputs. Various alternatives for estimating these SWA inputs are reviewed, and a sensitivity analysis of the SWA to misestimating the input parameters is performed. The accuracy of the current development was assessed using simulated Modtran data. The root mean square error (RMSE) of the simulated LST was calculated as 0.93 °C. This SWA development is leading to progress in the determination of LST by Landsat-8 TIRS.
A Methodology for Comparing the Surface Urban Heat Island in Selected Urban Agglomerations Around the World from Sentinel-3 SLSTR Data
Retrieval of land surface temperature (LST) from satellite data allows to estimate the surface urban heat island (SUHI) as the difference between the LST obtained in the urban area and the LST of its surroundings. However, this definition depends on the selection of the urban and surroundings references, which translates into greater difficulty in comparing SUHI values in different urban agglomerations across the world. In order to avoid this problem, a methodology is proposed that allows reliable quantification of the SUHI. The urban reference is obtained from the European Space Agency Climate Change Initiative Land Cover and three surroundings references are considered; that is, the urban adjacent (Su), the future adjacent (Sf), and the peri-urban (Sp), which are obtained from mathematical expressions that depend exclusively on the urban area. In addition, two formulations of SUHI are considered: SUHIMAX and SUHIMEAN, which evaluate the maximum and average SUHI of the urban area for each of the three surrounding references. As the urban population growth phenomenon is a world-scale problem, this methodology has been applied to 71 urban agglomerations around the world using LST data obtained from the sea and land surface temperature radiometer (SLSTR) on board Sentinel-3A. The results show average values of SUHIMEAN of (1.8 ± 0.9) °C, (2.6 ± 1.3) °C, and (3.1 ± 1.7) °C for Su, Sf, and Sp, respectively, and an average difference between SUHIMAX and SUHIMEAN of (3.1 ± 1.1) °C. To complete the study, two additional indices have been considered: the Urban Thermal Field Variation Index (UFTVI) and the Discomfort Index (DI), which proved to be essential for understanding the SUHI phenomenon and its consequences on the quality of life of the inhabitants.
Time Evolution of the Surface Urban Heat Island
Atmospheric and surface urban heat islands (UHI) originate from common energetic processes, but the status of scientific knowledge on their time evolution is highly disparate. The diurnal cycles of atmospheric UHI are well known based on years of continuous measurements in cities; the cycles of surface UHI, however, cannot be measured continuously or in situ. In this article, we aim to reconcile these differences. We begin with a synthesis of previous work on the diurnal evolution of surface UHI, which leads to a novel but historically minded approach to the research problem. The approach involves a combination of microscale and mesoscale urban climate models, each of which is forced with universally described urban and rural surface parameters and atmospheric profiles. With these models, we produce theoretical time‐temperature curves for the surface UHI that are comparable to the classic curves of atmospheric UHI. This work prompts a critical look at the use of satellite thermal imagery to assess heat islands and heat risks in cities. To that end, we recommend new and more functional definitions of surface temperature. Conceptually, these represent “incomplete” temperatures defined by specific facets of the urban environment. Plain Language Summary Urban heat islands (UHI) refer to the added warmth in cities due to the abundance of buildings, vehicles, and paved ground. However, very little is known about the hourly and daily changes in the surface temperatures of the city. This is partly due to the technological difficulties of sampling surface temperatures in urban environments, and to the myriad of surface types in cities. In this article, we aim to overcome this difficulty by using a combination of urban climate models, which can replicate daily temperature cycles for the surface UHI. With these data, we recommend new indicators of surface temperature that more accurately describe the heat risks and building energy demands in cities. Key Points Three numerical climate models are used to characterize the diurnal evolution of the surface urban heat island Diurnal evolution of surface heat islands varies with regional climate, urban morphology, rural land cover, soil moisture, and wind speed Satellite‐based observations of surface heat islands are likely to overestimate (underestimate) actual daytime (nighttime) impacts
Optical and Thermal Remote Sensing for Monitoring Agricultural Drought
By effectively observing the land surface and obtaining farmland conditions, satellite remote sensing has played an essential role in agricultural drought monitoring over past decades. Among all remote sensing techniques, optical and thermal remote sensing have the most extended history of being utilized in drought monitoring. The primary goal of this paper is to illustrate how optical and thermal remote sensing have been and will be applied in the monitoring, assessment, and prediction of agricultural drought. We group the methods into four categories: optical, thermal, optical and thermal, and multi-source. For each category, a concise explanation is given to show the inherent mechanisms. We pay special attention to solar-induced chlorophyll fluorescence, which has great potential in early drought detection. Finally, we look at the future directions of agricultural drought monitoring, including (1) early detection; (2) spatio-temporal resolution; (3) organic combination of multi-source data; and (4) smart prediction and assessment based on deep learning and cloud computing.
Volcanic Radiative Power Retrieval From Moderate‐to‐Low‐Temperature Features Using a Single TIR Band: Validation Using Volcanic Crater Lakes and Hydrothermal Systems
Assessing Radiative Power (RP) output is essential for monitoring and understanding volcanic systems. While Mid‐Infrared channels are used to assess thermal outputs at volcanoes exhibiting effusive activity, Thermal‐InfraRed (TIR) bands are better suited for measuring moderate‐to‐low‐temperature (≲600 K) features, such as those associated with hydrothermal activity. However, failure to meet key assumptions in TIR‐based calculations results in up to a ∼90% RP underestimation of ≲600 K sources. We thus introduce the TIR‐based Volcanic Radiative Power (VRPTIR ${\\text{VRP}}_{\\text{TIR}}$) method to accurately retrieve RP from single‐band TIR (10.5–12 μm) spectral radiance at systems dominated by surface temperatures of ≲600 K, that is, crater lakes and fumarole fields, achieving an uncertainty of ±35%. Comparison with ground truth for Ruapehu, El Chichón, Taal, Vulcano, Puracé, Poás, and White Island demonstrates the accuracy of VRPTIR ${\\text{VRP}}_{\\text{TIR}}$ in quantifying thermal output and detecting subtle variations in volcanic activity. This exportable method will facilitate compilation of global RP inventories for moderate‐to‐low‐temperature volcanic systems.
Optimizing the Processing of UAV-Based Thermal Imagery
The current standard procedure for aligning thermal imagery with structure-from-motion (SfM) software uses GPS logger data for the initial image location. As input data, all thermal images of the flight are rescaled to cover the same dynamic scale range, but they are not corrected for changes in meteorological conditions during the flight. This standard procedure can give poor results, particularly in datasets with very low contrast between and within images or when mapping very complex 3D structures. To overcome this, three alignment procedures were introduced and tested: camera pre-calibration, correction of thermal imagery for small changes in air temperature, and improved estimation of the initial image position by making use of the alignment of RGB (visual) images. These improvements were tested and evaluated in an agricultural (low temperature contrast data) and an afforestation (complex 3D structure) dataset. In both datasets, the standard alignment procedure failed to align the images properly, either by resulting in point clouds with several gaps (images that were not aligned) or with unrealistic 3D structure. Using initial thermal camera positions derived from RGB image alignment significantly improved thermal image alignment in all datasets. Air temperature correction had a small yet positive impact on image alignment in the low-contrast agricultural dataset, but a minor effect in the afforestation area. The effect of camera calibration on the alignment was limited in both datasets. Still, in both datasets, the combination of all three procedures significantly improved the alignment, in terms of number of aligned images and of alignment quality.
Resolution Enhancement of Remotely Sensed Land Surface Temperature: Current Status and Perspectives
Remotely sensed land surface temperature (LST) distribution has played a valuable role in land surface processes studies from local to global scales. However, it is still difficult to acquire concurrently high spatiotemporal resolution LST data due to the trade-off between spatial and temporal resolutions in thermal remote sensing. To address this problem, various methods have been proposed to enhance the resolutions of LST data, and substantial progress in this field has been achieved in recent years. Therefore, this study reviewed the current status of resolution enhancement methods for LST data. First, three groups of enhancement methods—spatial resolution enhancement, temporal resolution enhancement, and simultaneous spatiotemporal resolution enhancement—were comprehensively investigated and analyzed. Then, the quality assessment strategies for LST resolution enhancement methods and their advantages and disadvantages were specifically discussed. Finally, key directions for future studies in this field were suggested, i.e., synergy between process-driven and data-driven methods, cross-comparison among different methods, and improvement in localization strategy.
Thermal Remote Sensing from UAVs: A Review on Methods in Coastal Cliffs Prone to Landslides
Coastal retreat is a non-recoverable phenomenon that—together with a relevant proneness to landslides—has economic, social and environmental impacts. Quantitative data on geological and geomorphologic features of such areas can help to predict and quantify the phenomena and to propose mitigation measures to reduce their impact. Coastal areas are often inaccessible for sampling and in situ surveys, in particular where steeply sloping cliffs are present. Uses and capability of infrared thermography (IRT) were reviewed, highlighting its suitability in geological and landslides hazard applications. Thanks to the high resolution of the cameras on the market, unmanned aerial vehicle-based IRT allows to acquire large amounts of data from inaccessible steep cliffs. Coupled structure-from-motion photogrammetry and coregistration of data can improve accuracy of IRT data. According to the strengths recognized in the reviewed literature, a three-step methodological approach to produce IRTs was proposed.