Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
579
result(s) for
"thermal transmittance"
Sort by:
Impact of Window Frames on Annual Energy Consumption of Residential Buildings and Its Contribution to CO2 Emission Reductions at the City Scale
2022
Windows are among building components that have the strongest effect on thermal load. They play a significant role in heat loss in buildings because they usually have a largely higher thermal conductance than other components of the building envelope. Although many studies have highlighted the relevance of heat transfer through frames and aimed to improve their thermal performance, poorly insulated aluminum frames (thermal conductivity of aluminum is 160 W/m·K, while that of polyvinyl chloride [PVC] is 0.17 W/m·K) are still in use in Japan. Therefore, the U-values of different window frames were calculated, and annual thermal loads were calculated according to the window configurations, including the frame, glazing, and cavity. We focused on standard residential buildings in Japan with a total floor area of 120.6 m2 (two-story building), and the number of newly built houses and the application rate of window configurations in 2019 were surveyed to estimate the CO2 emissions by regions. CO2 emissions were reduced by approximately 3.98–6.58% with the application of PVC frames. Furthermore, CO2 emissions were converted into the amount of CO2 gas absorbed by cedar trees, which cover nearly 18% of the total land area of Japan. In conclusion, analogous to the amount of CO2 gas absorbed by cedar trees, the absorption effect was equivalent to 327,743–564,416 cedar trees. Changing the window frame material can facilitate a significant energy-saving effect as a considerable amount of energy is saved, especially at a city scale.
Journal Article
Analysis of a New Index for the Thermal Performance of Horizontal Opaque Building Components in Summer
2021
The summer behavior of an opaque building component subjected to the solar cycle depends on the combination of its thermal insulation, inertia, and solar reflectance. To rate the component dynamic behavior while an air conditioning system ensures a steady indoor temperature, a ‘solar transmittance index’ (STI) has been proposed. This is a component-based index calculated from a ‘solar transmittance factor’ (STF). STI takes into account the radiative properties at the outer surface and the thermophysical properties and layer structure of the materials beneath. It correlates the peak heat flux and temperature at the inner surface, relevant to cooling energy and thermal comfort, to the peak solar irradiance. Similar to the well-known ‘solar reflectance index’, STI is determined comparing the STF with two reference values, corresponding to a performance relatively low and very high, respectively. Thanks to its simplicity, the approach may allow defining easy to apply requirements to prevent building overheating, improve indoor comfort, reduce cooling energy demand, and mitigate some fallouts of the urban heat island effect. In this work, focused on roofs above occupied attics, peak heat flux and ceiling temperature are calculated by numerical simulation and compared with STF values for a wide range of roof types.
Journal Article
The Changes in Thermal Transmittance of Window Insulating Glass Units Depending on Outdoor Temperatures in Cold Climate Countries
by
Banionis, Karolis
,
Burlingis, Arūnas
,
Paukštys, Valdas
in
insulating glass unit
,
Low-E coatings
,
thermal transmittance
2021
Windows, which have a U-value that is governed by an insulating glass unit (IGU) U-value, must be a building’s only enclosure element, which has no design value concept. The declared U-value, which is calculated or measured with 0 °C of external ambient temperature, is used instead of the design value. For most of a building’s elements, its thermal transmittance with a decrease in the external temperature diminishes a little, i.e., improves. However, for modern window IGUs with Low-E coatings, it is the opposite: the thermal transmittance with a lowering external temperature increases. Therefore, for calculating the peak power for the heating of buildings it is necessary to pay attention to this phenomenon and, therefore, it would be wise to introduce the concept of design U-value for windows, recalculation rules, or affix their declared U-values. This is especially the case in modern times with the prevailing architectural tendencies for enlargement of transparent building elements. For IGUs with Low-E coatings and inert gas fillers, the thermal transmittance depends on the temperature difference between warm and cold environments. When the external temperature is −30 °C instead of 0 °C, the thermal transmittance of the IGU can increase by up to 35%. This study presents the thermal properties of windows’ IGUs depending on the changes in outdoor temperatures by using guarded a hot box climate chamber and presents the proposed simplified methodology for determining the thermal properties of windows’ glass units. The accuracy of the composed simplified methods, comparing the calculated thermal transmittances of IGUs with those measured in the “hot box”, were up to 1.25%.
Journal Article
Mechanical and Thermal Performance Characterisation of Compressed Earth Blocks
by
Machado, Gilberto
,
P. Junior, Adilson de
,
Mateus, Ricardo
in
Building construction
,
Cement
,
compressed earth blocks (CEBs)
2020
The present research is focused on an experimental investigation to evaluate the mechanical, durability, and thermal performance of compressed earth blocks (CEBs) produced in Portugal. CEBs were analysed in terms of electrical resistivity, ultrasonic pulse velocity, compressive strength, total water absorption, water absorption by capillarity, accelerated erosion test, and thermal transmittance evaluated in a guarded hotbox setup apparatus. Overall, the results showed that compressed earth blocks presented good mechanical and durability properties. Still, they had some issues in terms of porosity due to the particle size distribution of soil used for their production. The compressive strength value obtained was 9 MPa, which is considerably higher than the minimum requirements for compressed earth blocks. Moreover, they presented a heat transfer coefficient of 2.66 W/(m2·K). This heat transfer coefficient means that this type of masonry unit cannot be used in the building envelope without an additional thermal insulation layer but shows that they are suitable to be used in partition walls. Although CEBs have promising characteristics when compared to conventional bricks, results also showed that their proprieties could even be improved if optimisation of the soil mixture is implemented.
Journal Article
Investigation of thermal and sound insulation properties of sapwood and heartwood of willow tree
by
Kaya, Musa
,
Türk, Mutlu
,
Bülbül, Ramazan
in
heartwood and sapwood
,
sound absorption coefficient
,
thermal transmittance coefficient
2025
The heat and sound insulation properties of the heartwood and sapwood of willow (Salix alba L.) were investigated. Based on the experimental results, it was determined that the density value of the heartwood of the willow tree was higher than that of sapwood, while the moisture value was lower in the sapwood. The thermal conductivity coefficient was 0.090 W/m.K in sapwood and 0.103 W/m.K in heartwood; thermal transmittance coefficient was 3.954 W/m².K in sapwood and 4.738 W/m2.K in heartwood. The sound absorption coefficient was highest in sapwood at 1000 Hz frequency level with 0.37, while the highest in heartwood was 0.50 at 800 Hz frequency level. These results would be useful in willow wood structural applications.
Journal Article
Determining the U-Value of Façades Using the Thermometric Method: Potentials and Limitations
by
Rodríguez-Álvaro, Roberto
,
Marín, David
,
Moyano, Juan
in
Case studies
,
façades
,
in situ measurement
2018
The thermal transmittance of building envelopes determines to a large extent the energy demand of buildings. Thus, there is a keen interest in having methods which can precisely evaluate thermal transmittance. From a scientific point of view, this study analyses the viability of the application of the thermometric method (THM), one of the most used methods in Spain. For this purpose, the test method has been improved by determining the adequate test conditions, the selection and installation of equipment, data acquisition and post-processing, and the estimation of uncertainty. We analyse eight case studies in a Mediterranean climate (Csa) to determine the potentials and limitations of the method. The results show that the values obtained through THM are valid under winter environmental conditions with relative uncertainties between 6% and 13%, while difficulties to perform the test in optimal conditions, and therefore to obtain valid results in warmer seasons, are detected. In this regard, the case studies which obtained a greater number of observations by performing the filtrate conditions were able to obtain representative results. Furthermore, there are significant differences depending on the kind of equipment and probes used during the experimental campaign. Finally, in warm climate regions a data filtrate can be considered for observations of a temperature difference higher than 5 °C, obtaining valid results for the case studies, although the rise in the thermal gradient can guarantee a greater stability of data.
Journal Article
The Improved Measurement of Building Thermal Transmittance in Zagreb Using a Temperature-Based Method
2025
Theoretical U-values, which measure thermal transmittance, can be calculated based on the thermal parameters of an opaque element’s layers. However, practical measurements are essential to validate these theoretical values. The heat flux meter (HFM) method, is a widely accepted standard for such measurements. Despite its prevalence, the HFM method faces challenges, including wall surface roughness, ensuring proper contact between measurement devices and surfaces, and weather-related fluctuations. This study introduces a prototype system that employs a modified temperature-based method (TBM) to address these challenges. The paper provides a detailed comparison of thermal transmittance measurements obtained using both the modified TBM and the HFM method. The results showed U-value differences between the two methods. Additionally, these experimental findings were compared with theoretical calculations, highlighting the efficacy and potential of the modified TBM as an alternative approach for accurate U-value determination.
Journal Article
Evaluation of Numerical Methods for Predicting the Energy Performance of Windows
by
Pavlenko, Anatoliy M.
,
Sadko, Karolina
in
Analysis
,
Architecture and energy conservation
,
Boundary conditions
2023
Windows are important structural components that determine the energy efficiency of buildings. A significant parameter in windows technology is the overall heat transfer coefficient, U. This paper analyzes the methods of numerical determination of the U-value, including for windows that use passive technologies to improve thermal performance. The analysis was intended to evaluate the heat flux and temperature distribution across glazed surfaces and the accuracy of traditional approaches to the determination of heat loss through window structures. The results were obtained using the heat flux measurement method described in the international standard ISO 9869-1:2014. The paper shows that the non-uniformity of the heat flux density on a window surface can be as high as 60%, which in turn generates an error in the calculations based on stationary heat transfer conditions.
Journal Article
Analytical Methods to Estimate the Thermal Transmittance of LSF Walls: Calculation Procedures Review and Accuracy Comparison
by
Lemes, Gabriela
,
Mateus, Diogo
,
Santos, Paulo
in
accuracy
,
analytical methods
,
calculation procedures
2020
An accurate evaluation of the thermal transmittance ( U -value) of building envelope elements is fundamental for a reliable assessment of their thermal behaviour and energy efficiency. Simplified analytical methods to estimate the U -value of building elements could be very useful to designers. However, the analytical methods applied to lightweight steel framed (LSF) elements have some specific features, being more challenging to use and to obtain a reliable accurate U -value with. In this work, the main analytical methods available in the literature were identified, the calculation procedures were reviewed and their accuracy was evaluated and compared. With this goal, six analytical methods were used to estimate the U -values of 80 different LSF wall models. The obtained analytical U -values were compared with those provided by numerical simulations, which were used as reference U -values. The numerical simulations were performed using a 2D steady-state finite element method (FEM)-based software, THERM. The reliability of these numerical models was ensured by comparison with benchmark values and by an experimental validation. All the evaluated analytical methods showed a quite good accuracy performance, the worst accuracy being found in cold frame walls. The best and worst precisions were found in the Modified Zone Method and in the Gorgolewski Method 2, respectively. Very surprisingly, the ISO 6946 Combined Method showed a better average precision than other two methods, which were specifically developed for LSF elements.
Journal Article
Thermal Transmission through Existing Building Enclosures: Destructive Monitoring in Intermediate Layers versus Non-Destructive Monitoring with Sensors on Surfaces
by
Rizo, Carlos
,
Espinosa, Almudena
,
Echarri, Víctor
in
annual energy demand
,
building monitoring
,
data correction algorithm
2017
Opaque enclosures of buildings play an essential role in the level of comfort experienced indoors and annual energy demand. The impact of solar radiation and thermal inertia of the materials that make up the multi-layer enclosures substantially modify thermal transmittance behaviour of the enclosures. This dynamic form of heat transfer, additionally affected by indoor HVAC systems, has a substantial effect on the parameters that define comfort. It also has an impact on energy demand within a daily cycle as well as throughout a one-year use cycle. This study describes the destructive monitoring of an existing block of flats located in Alicante. Once the enclosure was opened, sensors of temperature (PT100), air velocity, and relative humidity were located in the different layers of the enclosure, as well as in the interior and exterior surfaces. A pyranometer was also installed to measure solar radiation levels. A temperature data correction algorithm was drawn up to address irregularities produced in the enclosure. The algorithm was applied using a Raspberry Pi processor in the data collection system. The comparative results of temperature gradients versus non-destructive monitoring systems are presented, providing measures of the transmittance value, surface temperatures and indoor and outdoor air temperatures. This remote sensing system can be used in future studies to quantify and compare the energy savings of different enclosure construction solutions.
Journal Article