Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
3 result(s) for "thermophilisation"
Sort by:
Climate change leads to accelerated transformation of high-elevation vegetation in the central Alps
High mountain ecosystems and their biota are governed by low-temperature conditions and thus can be used as indicators for climate warming impacts on natural ecosystems, provided that long-term data exist. We used data from the largest alpine to nival permanent plot site in the Alps, established in the frame of the Global Observation Research Initiative in Alpine Environments (GLORIA) on Schrankogel in the Tyrolean Alps, Austria, in 1994, and resurveyed in 2004 and 2014. Vascular plant species richness per plot increased over the entire period, albeit to a lesser extent in the second decade, because disappearance events increased markedly in the latter period. Although presence/absence data could only marginally explain range shift dynamics, changes in species cover and plant community composition indicate an accelerating transformation towards a more warmth-demanding and more drought-adapted vegetation, which is strongest at the lowest, least rugged subsite. Divergent responses of vertical distribution groups of species suggest that direct warming effects, rather than competitive displacement, are the primary causes of the observed patterns. The continued decrease in cryophilic species could imply that trailing edge dynamics proceed more rapidly than successful colonisation, which would favour a period of accelerated species declines.
Local Climatic Effects on Colonisation and Extinction Drive Changes in Mountain Butterfly Communities
Aim The capacity of cool refugia to protect cold‐adapted species against climate change may depend on both their initial climatic conditions and how quickly these change. We test how local climatic conditions influence mountain butterfly communities via their effects on colonisation and local extinction. Location Four mountain ranges in Central Spain. Methods We used community temperature index (CTI), based on the climatic niches of constituent species (species temperature index, STI), to estimate thermal affinities for butterfly communities sampled in 1984–2005 to 2017–2022. We related CTI to local temperature, estimated using the model Microclima, and tested for changes to local temperature and CTI over time. We used standard deviation in CTI (CTISD) and species richness to detect effects of colonisation and local extinction on community change. Finally, we tested for differences in thermal affinity and thermal niche breadth (STISD) between species undergoing local extinction or colonisation at each site. Results CTI was positively related to local temperature in both periods. However, there were regional differences in rates of change in CTI and local temperature. CTI increased overall, even though temperatures decreased at many sites; and CTI increases were greatest in historically cool sites. Neither CTISD nor species richness changed overall, suggesting that communities experienced equivalent numbers of colonisations and extinctions. Colonising species had warmer thermal affinities than those undergoing local extinction, and species with broader thermal niches increased their occupancy most over time. Main Conclusions Local climatic conditions influenced changes to community composition based on species thermal tolerances, resulting in the loss of communities where cool‐affinity species predominated, and a narrower range of community thermal affinities overall. Our results suggest that a regional perspective to identifying climate change refugia is needed to provide a wide range of local climate conditions and rates of change to help adapt conservation to climate change.
Long-Term Stability of Marine Forests Facing Moderate Gradual Warming in a Remote Biodiversity Hotspot
Aim Ocean warming and marine heatwaves are rapidly reconfiguring the composition of seaweed forests—the world's largest coastal vegetated biome. Seaweed forest responses to climate change in remote locations, which constitute the majority of the forest biome, remain however poorly quantified. Here, we examine the temporal stability of the seaweed forests across a global seaweed biodiversity hotspot where several species are predicted to undergo severe range contractions in this century. Location Western south coast of Australia. Methods Seaweed forest canopies were censused at 18 shallow (< 10 m) sheltered reefs between 1997 and 2006 and again between 2021 and 2024 (six sites per location). We also surveyed 24 sites to examine whether temporal changes differed over gradients of wave exposure and depth. Results Seaweed forest canopies across all locations showed surprisingly little change in biomass, cover, stand density and species composition over two decades, with strong spatial structuring across depth and exposure gradients persisting over time. The average thermal affinity of forest canopies (i.e., the community temperature index, CTI) did not track warming, suggesting that factors other than temperature (e.g., wave exposure and depth) are more important drivers of forest stand structure and/or that key thermal thresholds have not yet been crossed. Forests in the location with the most pronounced warming exhibited increased thermal bias over time (total bias of 0.8°C–2.2°C), indicating they were dominated by species with cooler affinities than their local temperatures. Main Conclusions The greater thermal bias in forests at the warmer edge of southern Australia suggests these will be more susceptible to future warming‐related compositional changes than forests in cooler locations. The relative stability we found contrasts with a current context of rapidly changing seaweed forests nationally and globally, highlighting the need to deepen our ecological understanding of the region so that future changes to its unique biodiversity and ecosystem services can be predicted and mitigated.