Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Series Title
      Series Title
      Clear All
      Series Title
  • Reading Level
      Reading Level
      Clear All
      Reading Level
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Content Type
    • Item Type
    • Is Full-Text Available
    • Subject
    • Country Of Publication
    • Publisher
    • Source
    • Target Audience
    • Donor
    • Language
    • Place of Publication
    • Contributors
    • Location
66,985 result(s) for "three-dimensional models"
Sort by:
Learn Autodesk Inventor 2018 basics : 3D modeling, 2D graphics, and assembly design
\"Get started with the basics of part modeling, assembly modeling, presentations, and drawings in this step-by-step tutorial on Autodesk Inventor fundamentals. Next, this book teaches you some intermediate-level topics such as additional part modeling tools, sheet metal modeling, top-down assembly features, assembly joints, and dimension and annotations. Engaging explanations, practical examples, and step-by-step instructions make this tutorial book complete. Once you have read Learn Autodesk Inventor 2018 Basics you will be able to use Autodesk Inventor for 3D modeling, 2D drawings, finite element analysis, mold design, and other purposes, just like a design professional. You will gain all the basic information and essential skills you need to work in Autodesk Inventor immediately. You will: Carry out virtual 3D modeling for your next 3D printing projects Design molds for 3D printing and other projects Generate 2D drawings Apply basic finite element analysis for figuring stress, tension, and optimized dimensions for your 3D printing projects\"--Page [4] of cover.
Evaluating models and assessment techniques for understanding oral biofilm complexity
Oral biofilms are three‐dimensional (3D) complex entities initiating dental diseases and have been evaluated extensively in the scientific literature using several biofilm models and assessment techniques. The list of biofilm models and assessment techniques may overwhelm a novice biofilm researcher. This narrative review aims to summarize the existing literature on biofilm models and assessment techniques, providing additional information on selecting an appropriate model and corresponding assessment techniques, which may be useful as a guide to the beginner biofilm investigator and as a refresher to experienced researchers. The review addresses previously established 2D models, outlining their advantages and limitations based on the growth environment, availability of nutrients, and the number of bacterial species, while also exploring novel 3D biofilm models. The growth of biofilms on clinically relevant 3D models, particularly melt electrowritten fibrous scaffolds, is discussed with a specific focus that has not been previously reported. Relevant studies on validated oral microcosm models that have recently gaining prominence are summarized. The review analyses the advantages and limitations of biofilm assessment methods, including colony forming unit culture, crystal violet, 2,3‐bis‐(2‐methoxy‐4‐nitro‐5‐sulfophenyl)‐2H‐tetrazolium‐5‐carboxanilide inner salt assays, confocal microscopy, fluorescence in situ hybridization, scanning electron microscopy, quantitative polymerase chain reaction, and next‐generation sequencing. The use of more complex models with advanced assessment methodologies, subject to the availability of equipment/facilities, may help in developing clinically relevant biofilms and answering appropriate research questions. This review focuses on diverse biofilm models and assessment strategies, highlighting the transition in the field from two‐dimensional models to the recently explored novel three‐dimensional models that aim to mimic biofilm development in the microenvironment of biological structures. The review further explores culture‐dependent biofilm assessment strategies such as colony‐forming unit assay, crystal violet assay, 2,3‐bis‐(2‐methoxy‐4‐nitro‐5‐sulfophenyl)‐2H‐tetrazolium‐5‐carboxanilide inner salt (XTT) assay, and imaging techniques, as well as the culture‐independent approach of next‐generation sequencing.
Digital modelmaking : laser cutting, 3D printing and reverse engineering
Digital manufacturing has become an intrinsic part of the modelmaking profession, so today's practitioner must be skilled in both traditional hand-making techniques and digital technology. Relevant to a wide variety of creative industries, including film and television, theatre, architecture and product design, Digital Modelmaking offers a comprehensive insight into the manufacturing processes and technologies used within contemporary modelmaking. Each chapter contains an in-depth explanation of each topic, presents examples of how each process is used and includes case studies from professional modelmakers and students. Topics covered include: making models using a laser cutter, 3D printer and CNC milling machinery; generating 3D digital data using a 3D scanner and photogrammetry; two-and three- dimensional drawing software such as CAD; designing models for digital manufacturing; selecting materials based on their suitability for modelmaking; combining traditional hand-making skills with digital manufacturing; painting and finishing models, and finally, moulding and casting using silicone and resin. This invaluable book will be of great interest for students, young professionals and everyone with a passion for design and making. It is superbly illustrated with 234 colour photographs and 32 line artworks giving numerous examples of the design process. Helen Lansdown has worked professionally as a modelmaker and designer for thirty years and is a lecturer at Herefordshire University teaching on the Model Design programme.
BigBrain: An Ultrahigh-Resolution 3D Human Brain Model
Reference brains are indispensable tools in human brain mapping, enabling integration of multimodal data into an anatomically realistic standard space. Available reference brains, however, are restricted to the macroscopic scale and do not provide information on the functionally important microscopic dimension. We created an ultrahigh-resolution three-dimensional (3D) model of a human brain at nearly cellular resolution of 20 micrometers, based on the reconstruction of 7404 histological sections. \"BigBrain\" is a free, publicly available tool that provides considerable neuroanatomical insight into the human brain, thereby allowing the extraction of microscopic data for modeling and simulation. BigBrain enables testing of hypotheses on optimal path lengths between interconnected cortical regions or on spatial organization of genetic patterning, redefining the traditional neuroanatomy maps such as those of Brodmann and von Economo.
Whale Algorithm for Schedule Optimization of Construction Projects Employing Building Information Modeling
This study introduces a new approach by applying the Whale Optimization Algorithm (WOA) to create construction schedules using geometric data from Building Information Modeling (BIM). The algorithm utilizes 3D model information to establish stability criteria, which are organized in a Directed Design Structure Matrix (DSM). These criteria are integrated into the WOA Fitness function to enhance the constructability of schedules, where each schedule is symbolized as a unique whale. Through iterative WOA computations, the approach consistently achieves maximum constructability scores starting from randomly generated schedules, affirming the efficacy of this method. The results reveal that the proposed algorithm effectively produced fully executable project schedules from diverse inputs. Despite variations in computational times due to different input parameters, the experiments verified the consistent generation of schedules that are 100% executable. The entire process of whale optimization method for the current problem is summarized in the graphical image.
New technologies for the classification of proximal humeral fractures: Comparison between Virtual Reality and 3D printed models—a randomised controlled trial
Correct classification of fractures according to their patterns is critical for developing a treatment plan in orthopaedic surgery. Unfortunately, for proximal humeral fractures (PHF), methods for proper classification have remained a jigsaw puzzle that has not yet been fully solved despite numerous proposed classifications and diagnostic methods. Recently, many studies have suggested that three-dimensional printed models (3DPM) can improve the interobserver agreement on PHF classifications. Moreover, Virtual Reality (VR) has not been properly studied for classification of shoulder injuries. The current study investigates the PHF classification accuracy relative to an expert committee when using either 3DPM or equivalent models displayed in VR among 36 orthopaedic surgery residents from different hospitals. We designed a multicentric randomised controlled trial in which we created two groups: a group exposed to a total of 34 3DPM and another exposed to VR equivalents. Association between classification accuracy and group assignment (VR/3DPM) was assessed using mixed effects logistic regression models. The results showed VR can be considered a non-inferior technology for classifying PHF when compared to 3DPM. Moreover, VR may be preferable when considering possible time and resource savings along with potential uses of VR for presurgical planning in orthopaedics.
A three-dimensional numerical study of flow characteristics in strongly curved channel bends with different side slopes
The influence of channel side slope on flow in strongly curved channel bends is studied numerically. The performances of five different turbulence models are investigated. Comparison to experimental measurements demonstrates that the fully 3D numerical model can reliably simulate a channel bend flow field. Among the tested turbulence models, the realizable k − ε model performed best. The present study also demonstrates that the realizable k − ε model can satisfactorily predict smaller flow features in bend flow, such as the outer-bank circulation cell. The validated model is employed to carry out additional computations for channel bends with different side slopes. It is found that the number, position, and strength of secondary flow cells varies with the channel side slope, with corresponding influence on flow distribution and flow vorticity.
Fast reconstruction method of three-dimension model based on dual RGB-D cameras for peanut plant
Background Plant shape and structure are important factors in peanut breeding research. Constructing a three-dimension (3D) model can provide an effective digital tool for comprehensive and quantitative analysis of peanut plant structure. Fast and accurate are always the goals of the plant 3D model reconstruction research. Results We proposed a 3D reconstruction method based on dual RGB-D cameras for the peanut plant 3D model quickly and accurately. The two Kinect v2 were mirror symmetry placed on both sides of the peanut plant, and the point cloud data obtained were filtered twice to remove noise interference. After rotation and translation based on the corresponding geometric relationship, the point cloud acquired by the two Kinect v2 was converted to the same coordinate system and spliced into the 3D structure of the peanut plant. The experiment was conducted at various growth stages based on twenty potted peanuts. The plant traits’ height, width, length, and volume were calculated through the reconstructed 3D models, and manual measurement was also carried out during the experiment processing. The accuracy of the 3D model was evaluated through a synthetic coefficient, which was generated by calculating the average accuracy of the four traits. The test result showed that the average accuracy of the reconstructed peanut plant 3D model by this method is 93.42%. A comparative experiment with the iterative closest point (ICP) algorithm, a widely used 3D modeling algorithm, was additionally implemented to test the rapidity of this method. The test result shows that the proposed method is 2.54 times faster with approximated accuracy compared to the ICP method. Conclusions The reconstruction method for the 3D model of the peanut plant described in this paper is capable of rapidly and accurately establishing a 3D model of the peanut plant while also meeting the modeling requirements for other species' breeding processes. This study offers a potential tool to further explore the 3D model for improving traits and agronomic qualities of plants.
3D-printed soft-tissue physical models of renal malignancies for individualized surgical simulation: a feasibility study
To construct patient-specific physical three-dimensional (3D) models of renal units with materials that approximates the properties of renal tissue to allow pre-operative and robotic training surgical simulation, 3D physical kidney models were created (3DSystems, Rock Hill, SC) using computerized tomography to segment structures of interest (parenchyma, vasculature, collection system, and tumor). Images were converted to a 3D surface mesh file for fabrication using a multi-jet 3D printer. A novel construction technique was employed to approximate normal renal tissue texture, printers selectively deposited photopolymer material forming the outer shell of the kidney, and subsequently, an agarose gel solution was injected into the inner cavity recreating the spongier renal parenchyma. We constructed seven models of renal units with suspected malignancies. Partial nephrectomy and renorrhaphy were performed on each of the replicas. Subsequently all patients successfully underwent robotic partial nephrectomy. Average tumor diameter was 4.4 cm, warm ischemia time was 25 min, RENAL nephrometry score was 7.4, and surgical margins were negative. A comparison was made between the seven cases and the Tulane Urology prospectively maintained robotic partial nephrectomy database. Patients with surgical models had larger tumors, higher nephrometry score, longer warm ischemic time, fewer positive surgical margins, shorter hospitalization, and fewer post-operative complications; however, the only significant finding was lower estimated blood loss (186 cc vs 236; p  = 0.01). In this feasibility study, pre-operative resectable physical 3D models can be constructed and used as patient-specific surgical simulation tools; further study will need to demonstrate if this results in improvement of surgical outcomes and robotic simulation education.
Snake-Based Model for Automatic Roof Boundary Extraction in the Object Space Integrating a High-Resolution Aerial Images Stereo Pair and 3D Roof Models
The accelerated urban development over the last decades has made it necessary to update spatial information rapidly and constantly. Therefore, cities’ three-dimensional models have been widely used as a study base for various urban problems. However, although many efforts have been made to develop new building extraction methods, reliable and automatic extraction is still a major challenge for the remote sensing and computer vision communities, mainly due to the complexity and variability of urban scenes. This paper presents a method to extract building roof boundaries in the object space by integrating a high-resolution aerial images stereo pair, three-dimensional roof models reconstructed from light detection and ranging (LiDAR) data, and contextual information of the scenes involved. The proposed method focuses on overcoming three types of common problems that can disturb the automatic roof extraction in the urban environment: perspective occlusions caused by high buildings, occlusions caused by vegetation covering the roof, and shadows that are adjacent to the roofs, which can be misinterpreted as roof edges. For this, an improved Snake-based mathematical model is developed considering the radiometric and geometric properties of roofs to represent the roof boundary in the image space. A new approach for calculating the corner response and a shadow compensation factor was added to the model. The created model is then adapted to represent the boundaries in the object space considering a stereo pair of aerial images. Finally, the optimal polyline, representing a selected roof boundary, is obtained by optimizing the proposed Snake-based model using a dynamic programming (DP) approach considering the contextual information of the scene. The results showed that the proposed method works properly in boundary extraction of roofs with occlusion and shadows areas, presenting completeness and correctness average values above 90%, RMSE average values below 0.5 m for E and N components, and below 1 m for H component.