Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
7
result(s) for
"three-fluid nozzle"
Sort by:
Formulating Inhalable Dry Powders Using Two-Fluid and Three-Fluid Nozzle Spray Drying
by
Leng, Donglei
,
Yang, Mingshi
,
Thanki, Kaushik
in
Aqueous solutions
,
Budesonide
,
Differential scanning calorimetry
2018
PurposeThe spray drying process is widely applied for pharmaceutical particle engineering. The purpose of this study was to investigate advantages and disadvantages of two-fluid nozzle and three-fluid nozzle spray drying processes to formulate inhalable dry powders.MethodsBudesonide nanocomposite microparticles (BNMs) were prepared by co-spray drying of budesonide nanocrystals suspended in an aqueous mannitol solution by using a two-fluid nozzle spray drying process. Budesonide-mannitol microparticles (BMMs) were prepared by concomitant spray drying of a budesonide solution and an aqueous mannitol solution using a spray drier equipped with a three-fluid nozzle. The resulting dry powders were characterized by using X-ray powder diffraction (XRPD), differential scanning calorimetry (DSC), dynamic mechanical analysis (DMA) and Raman microscopy. A Next Generation Impactor was used to evaluate the aerodynamic performance of the dry powders.ResultsXRPD and DMA results showed that budesonide remained crystalline in the BNMs, whereas budesonide was amorphous in the BMMs. Spray drying of mannitol into microparticles resulted in a crystalline transformation of mannitol, evident from XRPD, DSC and Raman spectroscopy analyses. Both BMMs and BNMs displayed a faster dissolution rate than bulk budesonide. The yield of BNMs was higher than that of BMMs. The mass ratio between budesonide and mannitol was preserved in the BNMs, whereas the mass ratio in the BMMs was higher than the theoretical ratio.ConclusionsSpray drying is an enabling technique for preparation of budesonide amorphous solid dispersions and nanocrystal-embedded microparticles. Two-fluid nozzle spray drying is superior to three-fluid nozzle spray drying in terms of yield.
Journal Article
Development of Inhalable Spray Dried Nitrofurantoin Formulations for the Treatment of Emphysema
by
Marasini, Nirmal
,
Leslie, Mathew N.
,
Traini, Daniela
in
Antibiotics
,
Chromatography
,
Chronic obstructive pulmonary disease
2022
A central characteristic of emphysematous progression is the continuous destruction of the lung extracellular matrix (ECM). Current treatments for emphysema have only addressed symptoms rather than preventing or reversing the loss of lung ECM. Nitrofurantoin (NF) is an antibiotic that has the potential to induce lung fibrosis as a side effect upon oral administration. Our study aims to repurpose NF as an inhalable therapeutic strategy to upregulate ECM expression, thereby reversing the disease progression within the emphysematous lung. Spray-dried (SD) formulations of NF were prepared in conjunction with a two-fluid nozzle (2FN) and three-fluid nozzle (3FN) using hydroxypropyl methylcellulose (HPMC) and NF at 1:1 w/w. The formulations were characterized for their physicochemical properties (particle size, morphology, solid-state characteristics, aerodynamic behaviour, and dissolution properties) and characterized in vitro with efficacy studies on human lung fibroblasts. The 2FN formulation displayed a mass mean aerodynamic diameter (MMAD) of 1.8 ± 0.05 µm and fine particle fraction (FPF) of 87.4 ± 2.8% with significantly greater deposition predicted in the lower lung region compared to the 3FN formulation (MMAD: 4.4 ± 0.4 µm; FPF: 40 ± 5.8%). Furthermore, drug dissolution studies showed that NF released from the 2FN formulation after 3 h was significantly higher (55.7%) as compared to the 3FN formulation (42.4%). Importantly, efficacy studies in human lung fibroblasts showed that the 2FN formulation induced significantly enhanced ECM protein expression levels of periostin and Type IV Collagen (203.2% and 84.2% increase, respectively) compared to untreated cells, while 3FN formulations induced only a 172.5% increase in periostin and a 38.1% increase in type IV collagen. In conclusion, our study highlights the influence of nozzle choice in inhalable spray-dried formulations and supports the feasibility of using SD NF prepared using 2FN as a potential inhalable therapeutic agent to upregulate ECM protein production.
Journal Article
Impact of Three-Fluid Nozzle Emulsification on the Physicochemical and Thermodynamic Properties of Avocado Oil Microcapsules Obtained by Spray Drying
by
Gutiérrez-López, Gustavo F.
,
Yáñez-Fernández, Jorge
,
Hernández-Sánchez, Humberto
in
Adsorption
,
Analysis
,
Dehydration
2025
This study investigated the production and characterization of avocado oil emulsions generated with a three-fluid nozzle (3FN) and the physicochemical and thermodynamic properties of the resulting microcapsules obtained by spray drying. The emulsions showed a bimodal size distribution with a main peak at 0.893 µm and PDI values below 0.70 indicate a mid-range polydispersity. Despite their shear-thinning behavior, emulsions exhibited limited stability, as indicated by ζ-potential (−23.9 mV) and increasing TSI values. Spray drying with 3FN achieved a yield of 71.7% and an encapsulation efficiency of 57.8%, with moisture content below 4%, meeting commercial requirements. The microcapsules displayed unimodal particle distributions (D[3,2] = 8.38 µm; D[4,3] = 11.14 µm) and irregular spherical morphologies with surface folds and roughness. Adsorption isotherms followed a type II pattern, well described by the GAB model, with monolayer moisture content (0.043–0.060 g H2O/g solids) defining critical stability conditions. Thermodynamic analyses identified a “minimum entropy zone” corresponding to enhanced structural stability, while glass transition data confirmed that encapsulated oil did not act as a plasticizer. Overall, the use of a three-fluid nozzle enabled the development of avocado oil microcapsules with favorable physical and thermal attributes, supporting their potential for long-term stability in functional food applications.
Journal Article
Surface Composition and Aerosolization Stability of an Inhalable Combinational Powder Formulation Spray Dried Using a Three-Fluid Nozzle
2020
PurposeThis study aims to understand the impact of spray drying nozzles on particle surface composition and aerosol stability.MethodsThe combination formulations of colistin and azithromycin were formulated by 2-fluid nozzle (2 N) or 3-fluid (3 N) spray drying in a molar ratio of 1:1. A 3-factor, 2-level (23) factorial design was selected to investigate effects of flow rate, inlet temperature and feed concentration on yield of spray drying and the performance of the spray dried formulations for the 3 N.ResultsFPF values for the 2 N formulation (72.9 ± 1.9% for azithromycin & 73.4 ± 0.8% for colistin) were higher than those for the 3 N formulation (56.5 ± 3.8% for azithromycin & 55.1 ± 1.6% for colistin) when stored at 20% RH for 1 day, which could be attributed to smaller physical size for the 2 N. There was no change in FPF for both drugs in the 2 N formulation after storage at 75% RH for 90 days; however, there was a slight increase in FPF for colistin in the 3 N formulation at the same storage conditions. Surface enrichment of hydrophobic azithromycin was measured by X-ray photoelectron spectroscopy for both 2 N and 3 N formulations and interactions were studied using FTIR.ConclusionsThe 3-fluid nozzle provides flexibility in choosing different solvents and has the capability to spray dry at higher feed solid concentrations. This study highlights the impact of hydrophobic azithromycin enrichment on particle surface irrespective of the nozzle type, on the prevention of moisture-induced deterioration of FPF for hygroscopic colistin.
Journal Article
Effect of Storage Humidity on Physical Stability of Spray-Dried Naproxen Amorphous Solid Dispersions with Polyvinylpyrrolidone: Two Fluid Nozzle vs. Three Fluid Nozzle
by
Zhou, Qi (Tony)
,
Zemlyanov, Dmitry Y.
,
Cavallaro, Alex-Anthony
in
amorphous solid dispersions
,
Crystallization
,
Drugs
2021
In a spray drying operation, a two-fluid nozzle (2FN) with a single channel is commonly used for atomizing the feed solution. However, the less commonly used three-fluid nozzle (3FN) has two separate channels, which allow spray drying of materials in two incompatible solution systems. Although amorphous solid dispersions (ASDs) prepared using a 3FN have been reported to deliver comparable drug dissolution performance relative to those prepared using a 2FN, few studies have systematically examined the effect of 3FN on the physical stability. Therefore, the goal of this work is to systematically study the physical stability of ASDs that are spray-dried using a 3FN compared to those prepared using the traditional 2FN. For the 2FN, a single solution of naproxen and polyvinylpyrrolidone (PVP) was prepared in a mixture of acetone and water at a 1:1 volume ratio because 2FN allows for only one solution inlet. For the 3FN, naproxen and PVP were dissolved individually in acetone and water, respectively, because 3FN allows simultaneous entry of two solutions. Upon storage of the formulated ASDs at different humidity levels (25%, 55% and 75% RH), naproxen crystallized more quickly from the 3FN ASDs as compared with the 2FN ASDs. 3FN ASDs crystallized after 5 days of storage at all conditions, whereas 2FN ASDs did not crystallize even at 55% RH for two months. This relatively higher crystallization tendency of 3FN ASDs was attributed to the inhomogeneity of drug and polymers as identified by the solid-state Nuclear Magnetic Resonance findings, specifically due to poor mixing of water- and acetone-based solutions at the 3FN nozzle. When only acetone was used as a solvent to prepare drug-polymer solutions for 3FN, the formulated ASD was found to be stable for >3 months of storage (at 75% RH), which suggests that instability of the 3FN ASD was due to the insufficient mixing of water and acetone solutions. This study provides insights into the effects of solvent and nozzle choices on the physical stability of spray-dried ASDs.
Journal Article
The Use of a Three-Fluid Atomising Nozzle in the Production of Spray-Dried Theophylline/Salbutamol Sulphate Powders Intended for Pulmonary Delivery
by
Fahy, John V.
,
Healy, Anne-Marie
,
Focaroli, Stefano
in
Chronic obstructive pulmonary disease
,
Drug dosages
,
dry powder
2020
The aim of this study was to investigate the use of a three-fluid atomising nozzle in a lab-scale spray dryer for the production of dry powders intended for pulmonary delivery. Powders were composed of salbutamol sulphate and theophylline in different weight ratios. The three-fluid nozzle technology enabled powders containing a high theophylline content to be obtained, overcoming the problems associated with its relatively low solubility, by pumping two separate feed solutions (containing the two different active pharmaceutical ingredients (APIs)) into the spray dryer via two separate nozzle channels at different feed rates. The final spray-dried products were characterized in terms of morphology, solid-state properties and aerosolization performance, and were compared with an equivalent formulation prepared using a standard two-fluid atomising nozzle. Results confirmed that most of the powders made using the three-fluid atomising nozzle met the required standards for a dry powder inhaler formulation in terms of physical characteristics; however, aerosolization characteristics require improvement if the powders are to be considered suitable for pulmonary delivery.
Journal Article
Influence of the Location of Ascorbic Acid in Walnut Oil Spray-Dried Microparticles with Outer Layer on the Physical Characteristics and Oxidative Stability
2020
Purified walnut oil (PWO) microparticles with Capsul® (C, encapsulating agent), sodium alginate (SA) as outer layer and ascorbic acid (AA) as oxygen scavenger were obtained by spray drying using a three-fluid nozzle. AA was incorporated in the inner infeed (PWO-C(AA)/SA), in the outer infeed (PWO-C/SA(AA)) and in both infeed (PWO-C(AA)/SA(AA)). PWO-C(AA)/SA (4.56 h) and POW-C(AA)/SA(AA) (2.60 h) microparticles showed higher induction period than POW-C/SA(AA) (1.17 h), and lower formation of triacylglycerol dimers and polymers during storage (40 °C). Therefore, AA located in the inner infeed improved the oxidative stability of encapsulated PWO by removing the residual oxygen. AA in the SA outer layer did not improve the oxidative stability of encapsulated PWO since oxygen diffusion through the microparticles was limited and/or AA weakened the SA layer structure. The specific-location of AA (inner infeed) is a strategy to obtain stable spray-dried polyunsaturated oil-based microparticles for the design of foods enriched with omega-3 fatty acids.
Journal Article