Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
1 result(s) for "three-tailed helical microrobots"
Sort by:
Stochastic Dynamic Analysis of a Three-Tailed Helical Microrobot in Confined Spaces
This study investigates the complex dynamic behavior of three-tailed helical microrobots operating in confined spaces. A stochastic dynamic model has been developed to analyze the effects of input angular velocity, current, fluid viscosity, and channel width on their motion trajectories, velocity, mean squared displacement (MSD), and wobbling rate. The results indicate that Gaussian white noise exerts a dispersive driving effect on the motion characteristics of the microrobots, leading to a 49% reduction in their velocity compared to deterministic conditions. Additionally, the time required for microrobots to traverse from the initial position to the bifurcation point decreases by 65% when the current is increased and by 39% when the fluid viscosity is reduced. These findings underscore the importance of optimizing control parameters to effectively mitigate noise impacts, enhancing the practical performance of the microrobots in real-world applications. This research offers solid theoretical support and guidance for the deployment of microrobots in complex environments.