Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
29
result(s) for
"throughflow methods"
Sort by:
Body Force Model Implementation of Transonic Rotor for Fan/Airframe Simulations
2022
Three-dimensional throughflow models represent a turbomachinery cascade via a force distribution without the need for detailed geometric modelling in the numerical solution, saving consistent computational resources. In this paper, we present the application of a body force method on an axial transonic fan implemented into an in-house tool for axisymmetric throughflow simulations. By a systematic comparison of local and integral quantities with a validated numerical solution, the capabilities and limitations of the model are discussed for different operating regimes. The implementation is first validated at the peak efficiency calibration point, providing a good duplication of blade flow variables and radial profiles. The design total pressure is matched with a 0.6% absolute difference and a slightly higher slope of the characteristic towards the stall. The isentropic efficiency curve is penalised after the choking mass flow rate calibration, presenting an absolute difference close to 2%, although with a consistent off-design trend. In general, the model provides a satisfactory representation of the flow field and the outflow spanwise distributions, with locally larger discrepancies near the endwalls. Finally, the method is applied to simulate the fan and outlet guide vanes installed into an isolated turbofan nacelle. The onset of intake stall at a high angle of attack is compared between the body force and a boundary conditions-based approaches, highlighting the importance of adopting fully coupled solution methods to study fan/airframe interaction problems.
Journal Article
Development of a Throughflow-Based Simulation Tool for Preliminary Compressor Design Considering Blade Geometry in Gas Turbine Engine
by
Gui, Xingmin
,
Wan, Ke
,
Jin, Donghai
in
fan/compressor
,
Finite volume method
,
Gas turbine engines
2021
Gas turbine engines are highly intricate machines, and every component of them is closely associated with one another. In the traditional engine developing process, vast experiment tests are needed. To reduce unnecessary trials, a whole gas turbine engine simulation is extremely needed. For this purpose, a compressor simulation tool is now developed. Considering the inherent drawbacks of 0D analysis and 3D CFD (Computational Fluid Dynamics) calculation, the 2D throughflow method is an indispensable tool. Based on the circumferential average method (CAM), 3D Navier–Stokes is transformed into a 2D method. One phenomenon arising is that the lack of description about circumferential motion leads to the need for the blade force modeling in compressor simulation. Previous models are based on the assumption that flow passes through the average stream surface without entropy increasing, which is not applicable in the CAM. An improved model is proposed based on the result analysis from CAM and NUMECA method in a linear cascade. Whereafter, the model is applied in a highly loaded and low-speed fan, which has been tested for its performance characteristics. Utilizing the new model, the error of the adiabatic efficiency between CAM and experiment decreases from 4.0% to 1.0% and the accuracy of the mass flow, and pressure ratio remains unchanged. The time involved in the CAM simulation is nearly 70 times faster than that of the 3D simulation.
Journal Article
A CFD-Based Throughflow Method with Three-Dimensional Flow Features Modelling
by
Pacciani, Roberto
,
Marconcini, Michele
,
Arnone, Andrea
in
Aerodynamics
,
Aeronautics
,
Computational fluid dynamics
2017
The paper describes the development and validation of a novel computational fluid dynamics (CFD)-based throughflow model. It is based on the axisymmetric Euler equations with tangential blockage and body forces and inherits its numerical scheme from a state-of-the-art CFD solver (TRAF code). Secondary and tip leakage flow features are modelled in terms of Lamb–Oseen vortices and a body force field. Source and sink terms in the governing equations are employed to model tip leakage flow effects. A realistic distribution of entropy in the meridional and spanwise directions is proposed in order to compute dissipative forces on the basis of a distributed loss model. The applications are mainly focused on turbine configurations. First, a validation of the secondary flow modelling is carried out by analyzing a linear cascade based on the T106 blade section. Then, the throughflow procedure is used to analyze the transonic CT3 turbine stage studied in the framework of the TATEF2 (Turbine Aero-Thermal External Flows) European program. The performance of the method is evaluated by comparing predicted operating characteristics and spanwise distributions of flow quantities with experimental data.
Journal Article
The Influence of Pulsating Throughflow on the Onset of Electro-Thermo-Convection in a Horizontal Porous Medium Saturated by a Dielectric Nanofluid
2018
The joint effect of pulsating throughflow and external electric field on the outset of convective instability in a horizontal porous medium layer saturated by a dielectric nanofluid is investigated. Pulsating throughflow alters the basic profiles for temperature and the volumetric fraction of nanoparticle from linear to nonlinear with layer height, which marks the stability expressively. To treat this problem, the Buongiorno’s two-phase mathematical model is used taking the flux of volumetric fraction of nanoparticle is vanish on the horizontal boundaries. Using the framework of linear stability theory and frozen profile approach, the stability equations are derived and solved analytically applying the Galerkin weighted residuals method with thermal Rayleigh-Darcy number as the eigenvalue. The effect of increasing the external AC electric Rayleigh-Darcy number , the modified diffusivity ratio and the nanoparticle Rayleigh number is to favorable for the convective motion, while the Lewis number and porosity parameter have dual influence on the stability scheme in the existence of pulsating throughflow. The frozen profile method shows that the result of pulsating throughflow in both directions is stabilizing. An enlarged amplitude of throughflow fluctuations offers to increased stability by an amount that vary on frequency. It is also found that the oscillatory mode of convection is not favorable for nanofluids if the vertical nanoparticle flux is vanish on the boundaries.
Journal Article
A Performance Simulation Methodology for a Whole Turboshaft Engine Based on Throughflow Modelling
2024
To accurately predict the matching relationships between the various components and the engine performance in the whole aero-engine environment, this study introduces a two-dimensional throughflow simulation method for the whole aero-engine. This method is based on individual throughflow solvers for the turbo-machinery and the combustor. It establishes a throughflow simulation model for the whole engine by integrating with the compressor-turbine co-operating equations and boundary conditions. The turbo-machinery throughflow solver employs a circumferentially averaged form of the time-dependent Navier–Stokes equations (N-S) as the governing equation. The combustor solver uses the Reynolds Average Navier–Stokes (RANS) method to solve flow and chemical reaction processes by constructing turbulence, combustion, and radiation models. The accuracy of the component solver is validated using Pratt and Whitney’s three-stage axial compressor (P&W3S1) and General Electric’s high-pressure turbine (GE-EEE HPT), and the predicted results are consistent with the experimental data. Finally, the developed throughflow method is applied to simulate the throttling characteristics of the WZ-X turboshaft engine. The results predicted by the throughflow program are consistent with the GasTurb calculations, including the trends of shaft power delivered, specific fuel consumption (SFC), inlet airflow, and total pressure ratio of the compressor. The developed method to perform throughflow simulation of the whole aero-engine eliminates the dependence on a general component map. It can quickly obtain the meridian flow field parameters and overall engine characteristics, which is expected to guide the design and modification of the engine in the future.
Journal Article
Quantifying the Relative Contributions of the Global Oceans to ENSO Predictability With Deep Learning
2024
We propose a unified statistical method based on deep learning and analysis to quantify the relative contributions of the global oceans to El Niño–Southern Oscillation (ENSO) predictability. By incorporating subsurface signals in the Indian Ocean and Atlantic, the forecast lead can be skillfully extended by about one season. This skill enhancement mainly originates from the tropical Indian Ocean, presumably related to signals of the Indian Ocean Dipole passing to the tropical Pacific through the Indonesian Throughflow. The sea surface temperature anomaly (SSTA) in the Indian Ocean accounts for nearly 50% of surface contributions to both El Niño and La Niña predictions at a 15‐month lead. The north tropical Atlantic SSTA has a moderate impact on La Niña at a 9‐month lead. The Pacific Meridional Mode plays a significant role in both ENSO phases at a 12‐month lead. Thus, our study suggests that trans‐basin effects for ENSO are more vigorous than previously thought. Plain Language Summary El Niño–Southern Oscillation (ENSO) can excite various modes of climate variability in the Indian Ocean, Atlantic, and extratropical Pacific. However, less understood and quantified than the ENSO‐driven influences is how these regions outside the tropical Pacific in turn affect ENSO. Here, we quantify the impacts of the Indian Ocean, Atlantic, and extratropical Pacific on the predictability of ENSO. The lead time can be skillfully extended by one season by incorporating subsurface signals from the Indian and Atlantic oceans. The extratropical Pacific SST can indeed provide some useful sources of information for ENSO predictability at long lead times. A heatmap analysis further indicates that the triggering precursors freely selected by the deep learning model link to our current understanding of physical pathways for ENSO prediction. The Indian Ocean Dipole, the north tropical Atlantic SSTA, and the Pacific Meridional Mode are the main trans‐basin factors that vigorously influence ENSO at different lead times. Our findings emphasize that the impacts of the global oceans on ENSO are significant, and their influences should be properly considered in the coupled models. Key Points Heat content in the Indian Ocean can provide extra signals for long‐term El Niño–Southern Oscillation (ENSO) forecasts and extend the lead time by about one season The Indian Ocean Dipole can significantly influence El Niño via both surface and subsurface physical pathways at a 15‐month lead The north tropical Atlantic warming and the Pacific Meridional Mode also vigorously affect ENSO at lead times of both 12 and 9 months
Journal Article
Metagenomic analysis of deep-sea bacterial communities in the Makassar and Lombok Straits
by
Radjasa, Ocky Karna
,
Siallagan, Zen Ladestam
,
Suhardi, V. Sri Harjati
in
16S rRNA gene
,
631/114
,
631/326
2024
The extreme conditions of the deep-sea environment, including limited light, low oxygen levels, high pressure, and nutrient scarcity, create a natural habitat for deep-sea bacteria. These remarkable microorganisms have developed unique strategies to survive and adapt to their surroundings. However, research on the diversity of deep-sea bacteria, both culture-dependent and culture-independent, in Indonesian waters remains insufficient. This study focused on exploring the biodiversity of deep-sea bacteria, specifically in the Makassar and Lombok Strait, the main Indonesian throughflow pathway characterized by relatively fertile water, which serves as an important deep-sea region. High-throughput DNA sequencing of full-length 16S rRNA was employed to construct a genomic database. The results of the bioinformatic analysis revealed that two stations, 48 and 50 (Makassar Strait), exhibited a more similar community structure of deep-sea bacteria than did station 33 (Lombok Strait). Among the predominant phyla found at a depth of 1000 m, the top ten were Proteobacteria, Firmicutes, Bacteroidetes, Actinobacteria, Planctomycetes, Acidobacteria, Nitrospinae, Verrucomicrobia, Candidatus Melainabacteria, and Cyanobacteria. Furthermore, the genera
Colwellia, Moritella, Candidatus Pelagibacter, Alteromonas,
and
Psychrobacter
consistently appeared at all three stations, albeit with varying relative abundance values. These bacterial genera share common characteristics, such as psychrophilic, halophilic, and piezophilic tendencies, and are commonly found in deep-sea ecosystem. The environmental conditions at a depth of 1000 m were relatively stable, with an average pressure 10 MPa, temperature 4.68 °C, salinity 34.58 PSU, pH 8.06, chlorophyll-a 0.29 µg/L, nitrate 3.19 µmol/L, phosphate 6.32 µmol/L and dissolved oxygen (DO) 2.90 mg/L. The bacterial community structures at the three sampling stations located at the same depth (1000 m) exhibited similarities, as indicated by the closely aligned similarity index values.
Journal Article
Asymmetric Response of the Indonesian Throughflow to Co-Occurring El Niño–Southern Oscillation–Indian Ocean Dipole Events
2024
The Indonesian Throughflow (ITF) is significantly modulated by Indo-Pacific climate forcing, especially the El Niño–Southern Oscillation (ENSO) and the Indian Ocean Dipole (IOD). However, when ENSO and IOD occur concurrently, they tend to play different roles in the ITF volume transport. By employing an improved Constructed Circulation Analogue (CCA) method, the relative contributions of these climate events to the ITF inflow and outflow transport in the upper and lower layers were quantified. The results indicate that during co-occurring El Niño and positive IOD events, ENSO is the dominant influence, with ratio values of 5.5:1 (3.5:1) in the upper layer and 1.7:1 (1.6:1) in the lower layer of the inflow (outflow). Conversely, during co-occurring La Niña and negative IOD events, the IOD predominates, with ratio values of 1:6 (1:6.5) in the upper layer and 1:4 (1:3) in the lower layer of the inflow (outflow). The mechanisms underlying these variations in the upper and lower layers can be explained by the differences in sea level anomaly (SLA) and wave propagation, respectively. This study provides a new insight into distinct roles of climate forcing on the ITF volume transport during the simultaneous occurrence of multiple climate modes.
Journal Article
Investigation of Seal Cavity Leakage Flow Effect on Multistage Axial Compressor Aerodynamic Performance with a Circumferentially Averaged Method
by
Jin, Donghai
,
Liang, Dong
,
Gui, Xingmin
in
Aircraft
,
Airplane engines
,
circumferentially averaged throughflow model
2021
The seal cavity leakage flow has a considerable impact on the performance of the aeroengine, especially on the multistage compressor. Thus, a quasi-three-dimensional simulation program named CAM is developed basing on circumferentially averaged throughflow method. The program enables a rapid diagnosis for the performance degradation of multistage compressor caused by labyrinth wear. The coupling flow field between the seal cavity leakage flow and the main flow field at the root of the shrouded stator of a high-loading three-stage compressor with inlet guide vanes (IGV) was simulated by CAM and the results indicate that seal cavity leakage flow has a significant impact on the overall performance of the compressor. That is, for a 1% increase in the seal-tooth clearance-to-span ratio, the decrease in total pressure ratio was 2.6%, and the reduction in efficiency was 0.6%. Stage performance shows that the seal cavity leakage flow reduces the pressurization capacity of the current stator and the work capacity of the downstream rotor, but has little effect on the upstream blade row. Spanwise distribution of blade element performance shows that the leakage flow leads to an increased flow blockage near the hub, resulting in spanwise migration. The incidence of the stator and rear rotor then change through the entire span. The leakage flow leads to the flow blockage and migration and hence changes the incidence angle, which results in the deterioration of compressor performance.
Journal Article
The tidal effects in the Finite-volumE Sea ice–Ocean Model (FESOM2.1): a comparison between parameterised tidal mixing and explicit tidal forcing
by
Song, Pengyang
,
Sidorenko, Dmitry
,
Lohmann, Gerrit
in
Antarctic Circumpolar Current
,
Archipelagoes
,
Barotropic mode
2023
Tides are proved to have a significant effect on the ocean and climate. Previous modelling research either adds a tidal mixing parameterisation or an explicit tidal forcing to the ocean models. However, no research compares the two approaches in the same framework. Here we implement both schemes in a general ocean circulation model and assess both methods by comparing the results. The aspects for comparison involve hydrography, sea ice, meridional overturning circulation (MOC), vertical diffusivity, barotropic streamfunction and energy diagnostics. We conclude that although the mesh resolution is poor in resolving internal tides in most mid-latitude and shelf-break areas, explicit tidal forcing still shows stronger tidal mixing at the Kuril–Aleutian Ridge and the Indonesian Archipelago than the tidal mixing parameterisation. Beyond that, the explicit tidal forcing method leads to a stronger upper cell of the Atlantic MOC by enhancing the Pacific MOC and the Indonesian Throughflow. Meanwhile, the tidal mixing parameterisation leads to a stronger lower cell of the Atlantic MOC due to the tidal mixing in deep oceans. Both methods maintain the Antarctic Circumpolar Current at a higher level than the control run by increasing the meridional density gradient. We also show several phenomena that are not considered in the tidal mixing parameterisation, for example, the changing of energy budgets in the ocean system, the bottom drag induced mixing on the continental shelves and the sea ice transport by tidal motions. Due to the limit of computational capacity, an internal-tide-resolving simulation is not feasible for climate studies. However, a high-resolution short-term tidal simulation is still required to improve parameters and parameterisation schemes in climate studies.
Journal Article