Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Source
    • Language
931 result(s) for "thrust force"
Sort by:
Interaction between Micro-Amplitude Vibration and Thrust Force in Ultrasonic-Vibration-Assisted Drilling of Glass-Fiber-Reinforced Plastics
This research intends to investigate the effect and potential of the ultrasonic vibration of tools for drilling glass-fiber-reinforced plastics (GFRPs), especially with the aim of minimizing the thrust force. As an important parameter to characterize the vibration intensity, the vibration amplitude has a significant effect on the thrust force in the ultrasonic-vibration-assisted drilling (UVD) of GFRPs. It has been observed that the thrust force also influences the vibration amplitude, which may eventually result in a failure of the vibration. In this study, a method for the in-process measurement of the vibration amplitude was introduced to enable the investigation of the interaction between the thrust force and vibration amplitude in UVD. It was investigated how variations of the thrust force and vibration amplitude influence each other from holistic and individual perspectives. The critical condition was identified to ensure a sufficient ultrasonic vibration effect during drilling. Additionally, UVD experiments with different vibration amplitudes were carried out. The interaction between thrust force and vibration amplitude in UVD was revealed. It can be concluded that the combination of a moderate thrust force, low vibration amplitude reduction ratio, and high vibration amplitude increases the thrust force reduction ratio and secondly that an excessive thrust force undermines the effect of ultrasonic vibration. This provides an in-depth understanding of the interaction between vibration and thrust force in UVD, and helps to further improve the effect of ultrasonic vibration.
Critical Thrust Force for On-Set Delamination of Hybrid FRP Composite during Drilling Process
Hole quality is one of the important criteria for hybrid composite components when assessing drilling behaviour because it influences the strength of composite parts post assembly. Nonetheless, some unique characteristics of hybrid Fibre-Reinforced Polymer (FRP) composites make them difficult to obtain the required quality and strict final dimensional accuracy. Based on previous studies, delamination has been recognized as one of the critical failure mechanisms in the drilling operation of FRP composites. It can often be the limiting factor for the final composite materials applications. Thus, in order to achieve a delamination-free in the drilling of hybrid FRP composites, an analytical model and a series of thrust force experiments are endeavoured in this study. The main purpose of the model is to compute the critical thrust force at the on-set of delamination during the drilling process. Results of this analytical study indicated that the delamination damage can be alleviated if the applied thrust force is lower than the critical thrust force value. Importantly, a good agreement was evident between the estimated critical thrust force and the measured thrust force in this particular study.
Using Third Harmonic for Shape Optimization of Flux Density Distribution in Linear Permanent-Magnet Machine
This paper presents a sinusoidal permanent magnet (PM) shaping technique with third harmonic to improve the electromagnetic thrust force in linear slotless PM machines without sacrificing the thrust force ripple. Slotless PM linear machine possesses relatively low thrust force ripple due to the absence of cogging force, compared with slotted topology. However, thrust force ripple of the machine with rectangular PM shape still exists due to nonsinusoidal airgap flux density distribution produced by PMs. Sinusoidal shaping techniques can be used to reduce the thrust force ripple but the average thrust force is reduced as well. Therefore, a simple PM shaping technique with optimal 3rd harmonic is presented to improve the output thrust force but not to increase the thrust force ripple. The sinusoidal plus 3rd harmonic shaping technique is analytically demonstrated together conventional sinusoidal shaping method and verified with finite element method. The results show that the electromagnetic performance can be significantly improved.
Optimization of forces of feed, cutting and thrust based contribution parameters in machining with cutting fluid
The optimization of the parameters needed to identify the optimum inputs to get the desirable output of the particular process or the machining. Normally so many investigation focused to the optimization on the composites. In this investigation also metal matrix composite of the aluminium alloy reinforced with Boron carbide (B4C) and the Zirconium oxide (ZrO2) each have the four percentage of total volume contributed in the aluminium alloy of Al6061. The composite specimens were prepared by the molding process. Then the specimens were machined in the Lathe. There are so many factors considered for the machining among that cutting speed, depth of cut and the cutting fluid flowing nozzle diameter were taken for optimization (by Minitab 2013) for this investigation with respect to the three forces such as force of Feed, force of cutting and force of thrust. The corresponding regression equations were recommended for these forces. For the combination of these three forces based most favorable considerations were found as cutting speed of 60 m/min, cutting depth of 0.6 mm and the cutting fluid flowing nozzle diameter of 3 mm.
Machining GLARE fibre metal laminates: a comparative study on drilling effect between conventional and ultrasonic-assisted drilling
GLARE laminates are multi-layered metal-composite materials created from bonding sheets of metallic alloys with carbon or glass fibre layers. The application of hybrid-conventional machining processes such as ultrasonic-assisted drilling (UAD) is becoming of great interest to the aerospace industry due to its capability in reducing the cutting forces and tool wear which are directly responsible for drilling-induced delamination. There is rich literature on the conventional drilling (CD) of GLARE, but no work reported using UAD process. This study will fill this gap and investigate the UAD of GLARE laminates using an indigenously developed UAD system. The influence of spindle speed and feed rate on thrust force and surface roughness metrics ( R a and R z ) were investigated under CD and UAD regimes. The quality of the borehole and damage mechanisms in the laminate constituents was examined using scanning electron microscopy (SEM). The contribution of the drilling parameters on the measured outputs was further evaluated using the analysis of variance (ANOVA) statistical analysis. It was found that UAD resulted in a significant reduction in thrust force by up to 65% while surface roughness metrics R a and R z were unaffected by the type of drilling process used. SEM analysis showed irregular and fuzzier surfaces in glass fibre layers in holes machined using UAD due to the longitudinal vibration of the tool.
Analysis of thrust force and characteristics of uncut fibres at non-conventional oriented drilling of unidirectional carbon fibre-reinforced plastic (UD-CFRP) composite laminates
Carbon fibre-reinforced plastic (CFRP) is an often-used structural material in the high-tech industries, like aerospace, wind turbine, sport, automobile, robotics and military. Due to both the growing application area of composites, and the advanced construction requirements, the used thickness of the CFRP plates increases, and the necessity of drilling holes on the sides of the plates (normal II direction) becomes even more important. Many researchers studied the machinability of UD-CFRP using numerous drilling experiments at the normal I direction. However, drilling experiments at normal II and axial directions were not published yet. The main objective of the present study is to analyse and discuss the influence of a non-conventional drilling direction on hole-quality parameters and on the thrust force. Drilling experiments were carried out in unidirectional CFRP at non-conventional drilling direction, based on central composite inscribed design. Influences of feed rate and cutting speed were analysed using response surface methodology (RSM) and analysis of variance (ANOVA) techniques. Characteristics of uncut fibres were analysed using digital image processing (DIP). The results have proved that the effect of the cutting speed is more significant when drilling UD-CFRP at the non-conventional drilling direction than at the conventional one. Furthermore, the specific feed force ( k f ) in the case of the non-conventional drilling direction was more than three times higher than the k f in the case of the conventional one.
The effect of cutting tool coating on the form and dimensional errors of machined holes in GLARE® fibre metal laminates
Fibre metal laminates (FMLs) are multilayered metal composite materials currently used in aeronautical structures, especially where fatigue and impact resistance are required. FMLs are produced in large panels and often require assembly using the drilling process for riveting purposes. Hole making is a critical machining process in the joining and assembly of aeronautical components, which has to meet stringent tolerance requirements. This paper reports a systematic analysis of hole integrity when drilling an FML known as GLARE®. In particular, the primary objective is to investigate the impact of three different drill coatings (TiAlN, TiN and AlTiN/TiAlN), against several important hole parameters: thrust force, hole size, circularity, cylindricity and perpendicularity. The results show that TiAlN-coated drills produced the highest thrust force, while TiN-coated drills produced holes with the lowest deviation between the hole diameter measured at the entry and the exit and that the drill coating was the most influential parameter for the resulting hole size. TiAlN-coated drills resulted in the highest circularity at the upper part of the hole, while hole cylindricity tended to be best when using AlTiN/TiAlN- and TiN-coated drills. The ANOVA analysis shows that the drill coating and the spindle speed had a significant influence on hole size and circularity, while drill coating was the only influential parameter on hole cylindricity, and spindle speed was the only contributing parameter on hole perpendicularity. Finally, scanning electron microscopy analyses showed two distinct hole wall surface damage phenomenon due to broken fibres and evacuated metallic chips.
Parameters affecting mechanical and thermal responses in bone drilling: A review
Surgical bone drilling is performed variously to correct bone fractures, install prosthetics, or for therapeutic treatment. The primary concern in bone drilling is to extract donor bone sections and create receiving holes without damaging the bone tissue either mechanically or thermally. We review current results from experimental and theoretical studies to investigate the parameters related to such effects. This leads to a comprehensive understanding of the mechanical and thermal aspects of bone drilling to reduce their unwanted complications. This review examines the important bone-drilling parameters of bone structure, drill-bit geometry, operating conditions, and material evacuation, and considers the current techniques used in bone drilling. We then analyze the associated mechanical and thermal effects and their contributions to bone-drilling performance. In this review, we identify a favorable range for each parameter to reduce unwanted complications due to mechanical or thermal effects.
Comparative study for designing the horizontal thrust blocks in pipelines for water and sewage networks
The thrust block is one of the most widely recognized methods of resisting thrust forces. This type of infrastructure should be installed in bends, dead ends, tees and wyes. Thrust blocks perform the function of transferring thrust force to the ground safely. Thrust block dimensions are designed based on hydrostatic pressures, bend angles, and soil properties in the surrounding area. Several codes exist for designing thrust blocks, but we focus on Egyptian code for design and implementation of pipelines for drinking water and sewage networks (ECDIPWSN) and the American Water Works Association (AWWA). In this methodology, the steps of thrust block design by the codes are demonstrated and applied individually to one of the published papers. The goal of the study was to find the optimum percentages between the dimensions of the block in the two codes and to compare the quantity of concrete after the block was designed by each code. Based on the research, it was found that the concrete amount of the block designed by AWWA was smaller than that designed by ECDIPWSN.
Influence of cutting tool design on ultrasonic-assisted drilling of fiber metal laminates
Ultrasonic-assisted drilling (UAD) is a machining process that is known to improve the hole quality and reduce cutting forces. Previous studies focused on optimizing cutting parameters to improve the hole quality in conventional drilling (CD) and UAD, as well as to finding the optimum vibration parameters (frequency and amplitude) that will increase the effectiveness of the UAD process. However, the influence of cutting tool type during UAD has been largely overlooked. This research aims to address this gap by analyzing the effect of cutting tool type during UAD on the cutting forces and hole quality in GLARE (Glass Laminate Aluminum-Reinforced Epoxy) laminates. Four types of drills, namely, twist drill (TD), double cone drill (DCD), a step drill type 1 (SD1), and step drill type 2 (SD2) with different step length, were selected for this study. The lowest thrust force (47.04 N) and torque (0.079 Nm) were achieved using twist drill, while DCD, SD1, and SD2 exhibited higher thrust forces (12.81%, 20.69%, 41.3%) and torques (94%, 92%, 91%), respectively. In addition, TD produced high-quality holes with lowest surface roughness (Ra 1.66 μm, Rz 10.58 μm) and minimal burr formation (entry burr height 152.3 μm, exit burr height 69.22 μm). Conversely, DCD, SD1, and SD2 showed higher surface roughness Ra (23%, 16%, 24%) and Rz (16%, 37%, 29%), respectively, compared to the TD. Holes drilled using SD1 and SD2 generally had smaller burr height. Overall, UAD system effectively reduced cutting forces at low spindle speed and feed rate. To achieve higher drilling quality, specifically to reduce the surface roughness and exit burr height, a medium spindle speed of 3000 rpm, a feed rate of 225 mm/min is recommended. Drilling at higher cutting parameters using UAD resulted in a decline in hole quality, except for entry burr height.