Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
11 result(s) for "tidal notch"
Sort by:
Decoding the Interplay Between Tidal Notch Geometry and Sea‐Level Variability During the Last Interglacial (Marine Isotope Stage 5e) High Stand
Relic coastal landforms (fossil corals, cemented intertidal deposits, or erosive features carved onto rock coasts) serve as sea‐level index points (SLIPs), that are widely used to reconstruct past sea‐level changes. Traditional SLIP‐based sea‐level reconstructions face challenges in capturing continuous sea‐level variability and dating erosional SLIPs, such as tidal notches. Here, we propose a novel approach to such challenges. We use a numerical model of cliff erosion embedded within a Monte Carlo simulation to investigate the most likely sea‐level scenarios responsible for shaping one of the best‐preserved tidal notches of Last Interglacial age in Sardinia, Italy. Results align with Glacial Isostatic Adjustment model predictions, indicating that synchronized or out‐of‐sync ice‐volume shifts in Antarctic and Greenland ice sheets can reproduce the notch morphology, with sea level confidently peaking at 6 m and only under a higher than present erosion regime. This new approach yields insight into sea‐level trends during the Last Interglacial. Plain Language Summary Scientists typically investigate the position of sea level in geological time using the elevation, age, and characteristics of fossil marine organisms living in shallow water (e.g., coral reefs), beach deposits, or erosional features that were formed near the sea level. However, these indicators offer only fragmented, if not only point‐like information in time and not a continuous sea‐level record. To overcome this issue, we use a numerical model that reconstructs the shape of tidal notches (i.e., indentations created close to sea level in carbonate cliffs). We compare model‐generated notch shapes with the real shape of the tidal notch, and we produce a set of continuous sea‐level histories that are more likely to have produced one of the best‐preserved fossil tidal notches in the Orosei Gulf, Sardinia, Italy, carved during the Last Interglacial highstand, 125.000 years ago. Our findings suggest that whether the ice sheets in Antarctica and Greenland melted at the same time or separately, both scenarios could reproduce the actual shape of the tidal notch we observe at present. Our findings indicate that the erosion rate during that period was higher than present and the sea level is very likely to have reached up to 6 m. Key Points Cliff erosion modeling and Monte Carlo analysis indicate tidal notch geometry can offer a continuous record of past sea level variability The geometry of Orosei’s tidal notch, Italy can be replicated through simultaneous or asynchronous Antarctic–Greenland ice melting scenarios The morphology of the Last Interglacial notch is more efficiently replicated using higher‐than‐present erosion rates and a 6 m sea‐level peak
Dipping Tidal Notch (DTN): Exposed vs. Sheltered Morphometry
Tidal notches, long regarded as reliable indicators of mean sea level, have been extensively studied along carbonate coasts in the central Mediterranean Sea. Previous studies revealed a correlation between the genesis of tidal notches and tidal range, lithology, cliff foot depth, and wave energy. In the 2020 Geoswim campaigns at Lampedusa, the southernmost island of the Pelagie archipelago (Italy), and in Gozo Island (Malta), ‘anomalous’ tidal notches were identified. Unlike normal notches observed elsewhere, those in Lampedusa’s southern bays exhibited a particular behaviour—constantly deepening in the inner part of the bays, reaching a maximum depth of approximately 30 cm below sea level and narrowing inwards. Similar phenomena were previously observed near Marseille (France). As confirmed by the literature, all these areas are tectonically stable. Time-lapse images, alongside measurements of morphometric parameters, were collected during the survey. Our hypothesis indicates that a combination of marine factors influenced by local marine conditions driven by the local morphology of the small bays exposed to southern quadrants contribute to the formation of these unique landforms. The latter manifests higher lowering erosion rates slightly below the mean sea level in sheltered areas, challenging conventional notions about tidal notch formation.
Evidence of repeated late Holocene rapid subsidence in the SE Cyclades (Greece) deduced from submerged notches
An underwater geomorphological survey along the coasts of six Cycladic islands (Sifnos, Antiparos, Paros, Naxos, Iraklia and Keros) revealed widespread evidence of seven submerged tidal notches. At least seven former shorelines were identified at depths between 280 ± 20 and 30 ± 5 cm below modern sea level. The vertical succession of several submerged notches suggests the occurrence of rapid subsidence events, potentially of seismic origin. Comparison with other sea-level indicators from Naxos and Delos islands indicates that these relative sea-level changes took place after 3300 BP and provides a rough estimate of the time of development of several submerged shorelines. The submergence of the uppermost notch at −30 ± 5 cm is ascribed to effects of the recent global sea-level rise occurred during the last two centuries and, at least in part, to effects of recent earthquakes. Potential effects of the 1956 Amorgos earthquake with regard to coseismic and post-seismic vertical displacement have been recently investigated using a modellistic approach. According to the above, the lower shorelines should result from repetitive subsidence events and not from gradual subsidence.
Quaternary Evolutionary Stages of Selinitsa Cave (SW Peloponnese, Greece) Reveal Sea-Level Changes Based on 3D Scanning, Geomorphological, Biological, and Sedimentological Indicators
Significant evolutionary stages of Selinitsa Cave (SW Peloponnese, Greece) were revealed by 3D mapping, as well as geomorphological study of the cave and the nearby landscape. Four marine terraces were identified in the area of the coastal cave at 6, 10.7, 16.6, and 30–32 m above sea level (asl), with the terrace at 16.6 m representing Marine Isotope Stage (MIS) 5. The widest karstified space of Selinitsa Cave clusters between 15.73 and 18.05 m above sea level (asl), with the peak lying at 16.4 m asl, corresponding to the level where the phreatic/epiphreatic zone was stable for a sufficient period of time. A tidal notch at 16.4 m asl at the cave entrance is correlated to the marine terrace at 16.6 m. Both features correspond to the sea-level stand at which intense karstification occurred. The tidal notch bears a horizontal arrangement of Lithophaga borings at the vertex. Sedimentological investigation of the Selinitsa fine-grained deposit revealed the paleohydrologic regime of the cave. It is characterized by “slack-water” facies, indicating very low water flow speeds, whereas the thickness of the deposit points to stable hydrological conditions for prolonged periods. The cave sediment height of 18.8 m asl indicates a flooding level higher than sea level. The overlying Plattenkalk flysch is most probably the major source of detritus, and the predominance of authigenic dolomite (>98% modal in the carbonate fraction) indicates a hyposaline environment related to mixing of sea water with percolating fresh water. The approach of this study shows the significance of 3D mapping, bio-geo-Relative Sea Level (RSL) indicators, and sedimentology in deciphering the paleogeographic evolution of coastal karstic systems and subsequently defining the paleoclimate regime of coastal areas in Greece and the eastern Mediterranean during the Late Quaternary.
Late Holocene tectonic implications deduced from tidal notches in Leukas and Meganisi islands (Ionian Sea)
In this paper the tectonic behavior of Leukas and Meganisi islands (Ionian Sea) is examined through underwater research carried out in both islands. A possible Late Holocene correlation between coseismic subsidences is attempted and evidenced by submerged tidal notches in both islands. These subsidence events probably occurred after the uplift that affected the northernmost part of Leukas around 4 to 5ka BP. In conclusion, although the whole area was affected by a similar tectonic strain, certain coseismic events were only recorded in one of the two islands and in some cases they affected only part of the study area..
Fossil shorelines at Corfu and surrounding islands deduced from erosional notches
New geomorphological investigations along the coasts of Corfu, Othonoi, Paxoi, and Antipaxoi Islands allowed the identification of recent fossil shorelines. Former sea-level positions were deduced from sea-level indicators. A ‘modern’ tidal notch, submerged c. −20 cm, was observed in all studied islands. This notch is regarded to have been submerged by the global sea-level rise that occurred during the 19th and 20th centuries at a rate exceeding the possibilities of intertidal bioerosion. Its presence provides evidence that no vertical tectonic movements occurred since its formation. On Corfu, impacts of ancient earthquakes have left some marks of emergence at about ≥+130 ± 11, +110 ± 11, +65 ± 11, +40 ± 11, and +25 ± 11 cm, as well as marks of submergence at about −40 to −50, −85 ± 11, −120 ± 11, and −180 ± 11 cm. The emergence of +130 ± 11 cm, previously dated at about 790–400 cal. bc, was detected through erosion notches at various sites in the western part of Corfu and appears to continue even more west, at Othonoi Island. Tidal notches submerged at depths exceeding 0.4 m were observed in the northeastern part of the island and suggest the local occurrence of a sequence of four coseismic subsidences, with average vertical displacements of 40 cm, during at least the last few millennia. At Paxoi and Antipaxoi, Holocene vertical movements seem to have been mainly of subsidence. At Paxoi, the ‘modern’ notch was found at about −20 to −30 cm, while four more submerged tidal notches were distinguished at about −40 ± 11, −60 ± 11, −75 ± 11, and −90 ± 11 cm, while in Antipaxoi, three submerged tidal notches were distinguished at about −60 ± 11, −75 ± 11, and −120 ± 11 cm.
Late Holocene shorelines deduced from tidal notches on both sides of the Ionian Thrust (Greece): Fiscardo Peninsula (Cephalonia) and Ithaca Island
Fossil shorelines produced by recent co-seismic movements were identified throughasubmarine survey along the coasts of Ithaca and Fiscardo (Greece).In both areas a tidal notch-slightly submerged below present Mean Sea Level (MSL) was observed at various sites. This \"modern\" notch is known to have been submerged by the global sea-level rise during the 19thand 20thcenturies. The depth after tide and air-pressure correction of the vertex of the \"modern\" notch (that owes its submergence to the current rapid sea level rise) was measured between -20 and -30±5cm at Fiscardo and between -36 and -45±6cm at Ithaca. This \"modern\" notch at the same depth on east and west sides of the Ionian Thrust suggests that both areas were not affected by the co-seismic vertical movements that occurred in 1953 (in the wider area). On the other hand, a greater depth in Ithaca could be an effect of co-seismic subsidence. Over the long term, the tectonic behavior of Ithaca differs from Fiscardo. At Ithaca no evidence of emergence was found and Holocene vertical movements have been only of subsidence: submerged fossil tidal notches were distinguished below MSL at about -40 (modern), -60, -75, -95, -106, -126, -150 and -220±6cm. On the East coast of Fiscardo peninsula impacts of ancient earthquakes have left some marks of emergence at about +18 and +44±5cm, and of submergence at about -25 (modern), -45, -60, -75, -82, -100 and -230cm, with even some evidence of past uplift and subsidence at the same sites.
Holocene Relative Sea-Level Changes and Mangrove Response in Southwest Bohol, Philippines
Sediment-core, tidal-notch and14C data establish Holocene relative sea-level changes and the response of mangroves in the lower reaches of the Abatan River in southwest Bohol. Sedimentology, foraminifera and total organic contents of seven cores 4.5 to 17.2 m long define eight lithofacies and the corresponding depositional environments of the Holocene sediments. The lithofacies units are lagoonal clay; subtidal organic-rich clay; low marsh clayey peat; mangrove peat; supratidal organic-rich clay; fluvial mud and gravelly sand; floodplain clay; and beachface silt and sand. Their vertical and lateral distributions, and clustering of14C age dates define three parasequences. Parasequence A, composed of the lagoonal clay, low marsh clayey peat and organic-rich clays, and the lower section of the fluvial mud and gravelly sand was deposited after a rapid sea level rise from 12 to 2 m below present mean sea level (pmsl) approximately 8000 to 6000 yBP. Subsequently and until 4500 yBP, mangroves developed while sea level rose slowly from 2 to 1 m below pmsl. From ca. 4500 to 4300 yBP sea level again rose rapidly, from 1 to 0.7 m above pmsl, translating the shoreline landward and drowning the mangroves. Then a relative stillstand lasted until ca. 2500 yBP, while parasequence B consisting of beachface silt and sand was deposited. At ca. 2500 yBP, sea level started to fall to the present sea level, allowing the deposition of the prograding units of parasequence C, which is composed of peat, fluvial mud and gravelly sand, and floodplain clay. The thick and extensive peats were deposited in the favorable environment provided by a broad, shallow basin that formed during this period. The reconstructed local relative sea-level curve conforms to the general eustatic sea-level trend in the far-field region: a rapid rise followed by a relative stillstand and a subsequent fall to the present. A mid-Holocene higher-than-present sea level that characterizes areas in far-field sites is also evident in an emerged tidal notch.
Relative Sea Level Changes and Morphotectonic Implications Triggered by the Samos Earthquake of 30th October 2020
On 30th October 2020, the eastern Aegean Sea was shaken by a Mw = 7.0 earthquake. The epicenter was located near the northern coasts of Samos island. This tectonic event produced an uplift of the whole island as well as several cases of infrastructure damage, while a small tsunami followed the mainshock. Underwater and coastal geological, geomorphological, biological observations and measurements were performed at the entire coast revealing a complex character for the uplift. At the northwestern part of the island, maximum vertical displacements of +35 ± 5 cm were recorded at the northwestern tip, at Agios Isidoros. Conversely, the southeastern part was known for its subsidence through submerged archaeological remains and former sea level standstills. The 2020 underwater survey unveiled uplifted but still drowned sea level indicators. The vertical displacement at the south and southeastern part ranges between +23 ± 5 and +8 ± 5 cm suggesting a gradual fading of the uplift towards the east. The crucial value of tidal notches, as markers of co-seismic events, was validated from the outcome of this study. The co-seismic response of Samos coastal zone to the 30th October earthquake provides a basis for understanding the complex tectonics of this area.
Boring of Intertidal Sandstones by Isopod Sphaeroma triste in NW Borneo (Sarawak, Malaysia)
Dodge-Wan, D. and Nagarajan, R., 2020. Boring of intertidal sandstones by isopod Sphaeroma triste in NW Borneo (Sarawak, Malaysia). Journal of Coastal Research, 36(2), 238–248. Coconut Creek (Florida), ISSN 0749-0208. Sphaeromatid isopods are known for their ability to bore into wood and friable rock and to cause damage to mangrove plant roots, wooden structures, and polystyrene dock floats in the intertidal zone. The ability of isopods to bore extensively into rock and accelerate coastal erosion is less well known and has not been previously reported in Malaysia. This study investigated the presence, the identity, and the erosive effect of rock-boring isopods in sandstones of the NW Borneo coastal region (Sarawak, East Malaysia). A multidisciplinary approach was used, including field and laboratory observations (geological and biological) of rocks and wood. This study revealed that abundant cylindrical borings in soft intertidal rock are created by the boring isopod Sphaeroma triste (S. triste). Bioerosion by this species can result in the direct removal of up to 50% of the exposed surface of the rock and penetrate the rock up to a few centimeters depth. This has a significant but localised impact on coastal erosion, contributing to the development of concavities in the rock, enlargement of joints, deepening of wave cut notches, widening of rock pools, and erosion of fallen blocks and sea-cave walls. There is evidence of modification of the isopods' mandible incisor processes by abrasion during rock boring. Although several Sphaeromatid species are known to bore into soft rocks, this is the first report and comprehensive description of boring into sandstone substrates by S. triste. The S. triste borings are compared with those made by other species reported elsewhere. In terms of neoichnology, the borings belong to deep-tier Trypanites ichnofacies, and fossil equivalents may be useful in palaeogeographic reconstructions of ancient shorelines, although they may have poor preservation potential.