Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
2 result(s) for "time-marching quantum algorithm"
Sort by:
Time-Marching Quantum Algorithm for Simulation of Nonlinear Lorenz Dynamics
Simulating nonlinear classical dynamics on a quantum computer is an inherently challenging task due to the linear operator formulation of quantum mechanics. In this work, we provide a systematic approach to alleviate this difficulty by developing an explicit quantum algorithm that implements the time evolution of a second-order time-discretized version of the Lorenz model. The Lorenz model is a celebrated system of nonlinear ordinary differential equations that has been extensively studied in the contexts of climate science, fluid dynamics, and chaos theory. Our algorithm possesses a recursive structure and requires only a linear number of copies of the initial state with respect to the number of integration time-steps. This provides a significant improvement over previous approaches, while preserving the characteristic quantum speed-up in terms of the dimensionality of the underlying differential equations system, which similar time-marching quantum algorithms have previously demonstrated. Notably, by classically implementing the proposed algorithm, we showcase that it accurately captures the structural characteristics of the Lorenz system, reproducing both regular attractors–limit cycles–and the chaotic attractor within the chosen parameter regime.
Convergence analysis of domain decomposition algorithms with full overlapping for the advection-diffusion problems
The aim of this paper is to study the convergence properties of a time marching algorithm solving advection-diffusion problems on two domains using incompatible discretizations. The basic algorithm is first described, and theoretical and numerical results that illustrate its convergence properties are then presented.