Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
97 result(s) for "timing of meal intake"
Sort by:
Chronometabolism: The Timing of the Consumption of Meals Has a Greater Influence Than Glycemic Index (GI) on the Postprandial Metabolome
Eating late in the day is associated with circadian desynchrony, resulting in dysregulated metabolism and increased cardiometabolic disease risk. However, the underlying mechanisms remain unclear. Using targeted metabolomics of postprandial plasma samples from a secondary analysis of a randomised 2 × 2 crossover study in 36 healthy older Chinese adults, we have compared postprandial metabolic responses between high (HI) glycemic index (GI) or low-GI (LO) meals, consumed either at breakfast (BR) or at dinner (DI). 29 out of 234 plasma metabolites exhibited significant differences (p < 0.05) in postprandial AUC between BR and DI sessions, whereas only five metabolites were significantly different between HI and LO sessions. There were no significant interactions between intake timing and meal GI. Lower glutamine: glutamate ratio, lower lysine and higher trimethyllysine (TML) levels were found during DI compared with BR, along with greater postprandial reductions (δAUC) in creatine and ornithine levels during DI, indicating a worse metabolic state during the evening DI period. Greater reductions (δAUC) in postprandial creatine and ornithine were also observed during HI compared with LO (both p < 0.05). These metabolomic changes may indicate potential molecular signatures and/or pathways linking metabolic responses with cardiometabolic disease risk between different meal intake timings and/or meals with variable GI.
A scoping review of chronotype and temporal patterns of eating of adults: tools used, findings, and future directions
Circadian rhythms, metabolic processes and dietary intake are inextricably linked. Timing of food intake is a modifiable temporal cue for the circadian system and may be influenced by numerous factors, including individual chronotype – an indicator of an individual’s circadian rhythm in relation to the light–dark cycle. This scoping review examines temporal patterns of eating across chronotypes and assesses tools that have been used to collect data on temporal patterns of eating and chronotype. A systematic search identified thirty-six studies in which aspects of temporal patterns of eating, including meal timings; meal skipping; energy distribution across the day; meal frequency; time interval between meals, or meals and wake/sleep times; midpoint of food/energy intake; meal regularity; and duration of eating window, were presented in relation to chronotype. Findings indicate that, compared with morning chronotypes, evening chronotypes tend to skip meals more frequently, have later mealtimes, and distribute greater energy intake towards later times of the day. More studies should explore the difference in meal regularity and duration of eating window amongst chronotypes. Currently, tools used in collecting data on chronotype and temporal patterns of eating are varied, limiting the direct comparison of findings between studies. Development of a standardised assessment tool will allow future studies to confidently compare findings to inform the development and assessment of guidelines that provide recommendations on temporal patterns of eating for optimal health.
Effectiveness of Intermittent Fasting and Time-Restricted Feeding Compared to Continuous Energy Restriction for Weight Loss
The current obesity epidemic is staggering in terms of its magnitude and public health impact. Current guidelines recommend continuous energy restriction (CER) along with a comprehensive lifestyle intervention as the cornerstone of obesity treatment, yet this approach produces modest weight loss on average. Recently, there has been increased interest in identifying alternative dietary weight loss strategies that involve restricting energy intake to certain periods of the day or prolonging the fasting interval between meals (i.e., intermittent energy restriction, IER). These strategies include intermittent fasting (IMF; >60% energy restriction on 2–3 days per week, or on alternate days) and time-restricted feeding (TRF; limiting the daily period of food intake to 8–10 h or less on most days of the week). Here, we summarize the current evidence for IER regimens as treatments for overweight and obesity. Specifically, we review randomized trials of ≥8 weeks in duration performed in adults with overweight or obesity (BMI ≥ 25 kg/m2) in which an IER paradigm (IMF or TRF) was compared to CER, with the primary outcome being weight loss. Overall, the available evidence suggests that IER paradigms produce equivalent weight loss when compared to CER, with 9 out of 11 studies reviewed showing no differences between groups in weight or body fat loss.
The Influence of Meal Frequency and Timing on Health in Humans: The Role of Fasting
The influence of meal frequency and timing on health and disease has been a topic of interest for many years. While epidemiological evidence indicates an association between higher meal frequencies and lower disease risk, experimental trials have shown conflicting results. Furthermore, recent prospective research has demonstrated a significant increase in disease risk with a high meal frequency (≥6 meals/day) as compared to a low meal frequency (1–2 meals/day). Apart from meal frequency and timing we also have to consider breakfast consumption and the distribution of daily energy intake, caloric restriction, and night-time eating. A central role in this complex scenario is played by the fasting period length between two meals. The physiological underpinning of these interconnected variables may be through internal circadian clocks, and food consumption that is asynchronous with natural circadian rhythms may exert adverse health effects and increase disease risk. Additionally, alterations in meal frequency and meal timing have the potential to influence energy and macronutrient intake.A regular meal pattern including breakfast consumption, consuming a higher proportion of energy early in the day, reduced meal frequency (i.e., 2–3 meals/day), and regular fasting periods may provide physiological benefits such as reduced inflammation, improved circadian rhythmicity, increased autophagy and stress resistance, and modulation of the gut microbiota
Chrono-nutrition: a review of current evidence from observational studies on global trends in time-of-day of energy intake and its association with obesity
The importance of the circadian rhythm in regulating human food intake behaviour and metabolism has long been recognised. However, little is known as to how energy intake is distributed over the day in existing populations, and its potential association with obesity. The present review describes global trends in time-of-day of energy intake in the general population based on data from cross-sectional surveys and longitudinal cohorts. Evidence of the association between time-of-day of energy intake and obesity is also summarised. Overall, there were a limited number of cross-sectional surveys and longitudinal cohorts that provided data on time-of-day of energy intake. In the identified studies, a wide variation in time-of-day of energy intake was observed, with patterns of energy distribution varying greatly by country and geographical area. In relation to obesity, eight cross-sectional surveys and two longitudinal cohorts were identified. The association between time-of-day of energy intake and obesity varied widely, with several studies reporting a positive link between evening energy intake and obesity. In conclusion, the current review summarises global trends in time-of-day of energy intake. The large variations across countries and global regions could have important implications to health, emphasising the need to understand the socio-environmental factors guiding such differences in eating patterns. Evidence of the association between time-of-day of energy intake and BMI also varied. Further larger scale collaborations between various countries and regions are needed to sum data from existing surveys and cohorts, and guide our understanding of the role of chrono-nutrition in health.
Association of chrono-nutrition components with cardiometabolic health in a sample of Iranian adults: a cross-sectional study
Chrono-nutrition is an emerging field that examines how the frequency and timing of meals impact health. Previous research shows inconsistency in the relationship between chrono-nutritional components and cardiometabolic health. We investigated cross-sectional associations between these components and cardiometabolic health in 825 Iranian adults aged 20–59 years. Dietary data, including the number of eating occasions, meal timing and meal irregularity of energy intake, were collected using three 24-h dietary recalls. Anthropometric measurements, blood pressure and laboratory tests (fasting plasma glucose, lipid profile, insulin, uric acid and C-reactive protein) were conducted. Insulin resistance and sensitivity (homeostatic model assessment for insulin resistance, homeostatic model assessment for insulin sensitivity), the TAG-glucose, the lipid accommodation product and BMI were calculated. The demographic and morning-evening questionnaire was completed. General linear regression was used to assess associations between chrono-nutritional components and outcomes. Interactions with age and BMI were examined in all associations. Chrono-nutrition components were not significantly related to cardiometabolic risk factors in the total population. However, a lower number of eating occasions was associated with an increased LDL-cholesterol:HDL-cholesterol ratio (β (95 % CI): 0·26 (0·06, 0·48)) among overweight and obese participants. Additionally, less irregularity in breakfast energy intake was associated with a lower total cholesterol:HDL-cholesterol ratio (–0·37 (–0·95, –0·18)) and a lower LDL-cholesterol:HDL-cholesterol ratio (–0·32 (–0·79, –0·13)) among participants with a normal BMI (all P< 0·05). The study concluded that more frequent meals and regular energy intake might enhance cardiometabolic health cross-sectionally, highlighting the need for prospective studies to further investigate these associations and the mediating role of BMI.
Effects of Shift Work on the Eating Behavior of Police Officers on Patrol
Recent studies indicate that the timing of food intake can significantly affect metabolism and weight management. Workers operating at atypical times of the 24-h day are at risk of disturbed feeding patterns. Given the increased risk of weight gain, obesity and metabolic syndrome in shift working populations, further research is required to understand whether their eating behavior could contribute to these increased metabolic risks. The objective of this study was to characterize the dietary patterns of police officers across different types of shifts in their natural environments. Thirty-one police officers (six women; aged 32.1 ± 5.4 years, mean ± SD) from the province of Quebec, Canada, participated in a 28- to 35-day study, comprising 9- to 12-h morning, evening, and night shifts alternating with rest days. Sleep and work patterns were recorded with actigraphy and diaries. For at least 24 h during each type of work day and rest day, participants logged nutrient intake by timestamped photographs on smartphones. Macronutrient composition and caloric content were estimated by registered dieticians using the Nutrition Data System for Research database. Data were analyzed with linear mixed effects models and circular ANOVA. More calories were consumed relative to individual metabolic requirements on rest days than both evening- and night-shift days (p = 0.001), largely sourced from increased fat (p = 0.004) and carbohydrate (trend, p = 0.064) intake. Regardless, the proportions of calories from carbohydrates, fat, and protein did not differ significantly between days. More calories were consumed during the night, between 2300 h and 0600 h, on night-shift days than any other days (p < 0.001). Caloric intake occurred significantly later for night-shift days (2308 h ± 0114 h, circular mean ± SD) than for rest days (1525 h ± 0029 h; p < 0.01) and was dispersed across a longer eating window (13.9 h ± 3.1 h vs. 11.3 h ± 1.8 h, mean ± SD). As macronutrient proportions were similar and caloric intake was lower, the finding of later meals times on night-shift days versus rest days is consistent with emerging hypotheses that implicate the biological timing of food intake—rather than its quantity or composition—as the differentiating dietary factor in shift worker health.
Is chronotype associated with dietary intake and weight gain during pregnancy? A prospective and longitudinal study
•Evening pregnant women eat breakfast later and have higher energy and carbohydrate intakes at dinner than morning pregnant women.•Evening pregnant women present a worse pattern of gestational weight gain in the third trimester of pregnancy.•Morning pregnant women show a better diet quality, with higher intake of milk and dairy in addition to lower intake of saturated fat.•Considering chrononutrition variables in the prenatal nutritional guidelines is important for the promotion of maternal and fetal health. The effects of chronotype on dietary intake and weight gain during pregnancy have not been addressed in the literature. The aim of this study was to analyze the effect of chronotype on eating patterns, energy, and macronutrient intake and distribution, as well as weight gain during pregnancy. This was a prospective cohort study carried out with 100 pregnant women in the first, second, and third gestational trimesters. Dietary intake was assessed by three 24-h dietary recalls in each trimester, totaling nine recalls. Energy and macronutrient intake and distribution were evaluated at meals throughout the day. Chronotype was derived from midsleep time on free days, and the scores obtained were categorized into tertiles. Recommendations from the Institute of Medicine were used to assess the adequacy of weight gain. Generalized estimating equation models were used to determine the effects of chronotype and gestational trimester on eating patterns, daily energy, macronutrient distribution, and weight gain. Pregnant women with values for midsleep time on free days indicative of eveningness have breakfast later and also have higher energy and carbohydrate intake at dinner than “morning” women. Pregnant “morning” women showed better diet quality in terms of milk and dairy and saturated fat. Also, despite the tendency for all tertiles to gain excess weight during pregnancy, we found that pregnant women with a tendency to eveningness had worse adequacy of gestational weight gain in the third trimester than “morning” women (2.24 ± 0.25 versus 1.22 ± 0.14, P < 0.001). Pregnant women with a tendency to eveningness consume breakfast later in the day and exhibit greater consumption of energy and carbohydrates in the evening, as well as a worse standard of gestational weight gain in the third trimester. Our results emphasize the importance of considering chrononutrition variables in prenatal nutritional guidelines to promote maternal and fetal health.
Food insecurity and patterns of dietary intake in a sample of UK adults
The aim of this study was to identify the dietary intake correlates of food insecurity (FI) in UK adults. We recruited groups of low-income participants who were classified as food insecure (n 196) or food secure (n 198). Participants completed up to five 24 h dietary recalls. There was no difference in total energy intake by FI status (β FI = −0·06, 95 % CI − 0·25, 0·13). Food insecure participants consumed a less diverse diet, as evidenced by fewer distinct foods per meal (β FI = −0·27, 95 % CI − 0·47, −0·07), and had more variable time gaps between meals (β FI = 0·21, 95 % CI 0·01, 0·41). These associations corresponded closely to those found in a recent US study using similar measures, suggesting that the dietary intake signature of FI generalises across populations. The findings suggest that the consequences of FI for weight gain and health are not due to increased energy intake. We suggest that there may be important health and metabolic effects of temporal irregularity in dietary intake, which appears to be an important component of FI.
Higher energy intake at night effects daily energy distribution and contributes to excessive weight gain during pregnancy
The aim of this study was to analyze the effect of nighttime energy intake on daily energy and macronutrient distribution and weight gain during pregnancy. This was a prospective cohort study carried out with 100 pregnant women and the data collection occurred once per trimester. A dietary intake was assessed by three 24-h dietary recalls in each trimester, totaling nine dietary recalls. The distribution of energy and macronutrient intake was evaluated at meals throughout the day in each trimester and overall pregnancy. Women were classified as having “lower” or “higher” nighttime intake (1900 to 0559) if consumption in this period were below or above the median of the population, respectively, for at least two trimesters. Recommendations from the Institute of Medicine were used to assess the adequacy of weight gain. Generalized estimating equation models were used to determine the effects of nighttime intake and gestational trimesters on daily energy distribution and weight gain. In overall pregnancy, the higher group consumed a higher percentage of energy and macronutrients in the evening meals, and less energy, proteins, and lipids in morning meals when compared with the lower group. Also, women in the higher group had greater excessive weight gain in the third trimester compared with the lower group. Pregnant women with a higher energy intake at night had a lower percentage of energy, protein, and lipid intake in morning meals and a higher percentage of energy and macronutrient intake in the evening meals during pregnancy. A worse standard of gestational weight gain in the third trimester was also observed in pregnant women with a higher energy intake at night. •This study analyzed longitudinal effect of nighttime intake on weight gain.•Higher nighttime intake influenced lower energy intake in morning meals.•Higher nighttime intake affected excessive weight gain in the third trimester.