Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Source
    • Language
519 result(s) for "trained immunity"
Sort by:
Trained Immunity-Based Vaccines: A New Paradigm for the Development of Broad-Spectrum Anti-infectious Formulations
Challenge with specific microbial stimuli induces long lasting epigenetic changes in innate immune cells that result in their enhanced response to a second challenge by the same or unrelated microbial insult, a process referred to as trained immunity. This opens a new avenue in vaccinology to develop (TIbV), defined as vaccine formulations that induce training in innate immune cells. Unlike conventional vaccines, which are aimed to elicit only specific responses to vaccine-related antigens, TIbV aim to stimulate broader responses. As trained immunity is generally triggered by pattern recognition receptors (PRRs), TIbV should be formulated with microbial structures containing suitable PRR-ligands. The TIbV concept we describe here may be used for the development of vaccines focused to promote host resistance against a wide spectrum of pathogens. Under the umbrella of trained immunity, a broad protection can be achieved by: (i) increasing the nonspecific effector response of innate immune cells (e.g., monocyte/macrophages) to pathogens, (ii) harnessing the activation state of dendritic cells to enhance adaptive T cell responses to both specific and nonrelated (bystander) antigens. This capacity of TIbV to promote responses beyond their nominal antigens may be particularly useful when conventional vaccines are not available or when multiple coinfections and/or recurrent infections arise in susceptible individuals. As the set of PRR-ligands chosen is essential not only for stimulating trained immunity but also to drive adaptive immunity, the precise design of TIbV will improve with the knowledge on the functional relationship among the different PRRs. While the TIbV concept is emerging, a number of the current anti-infectious vaccines, immunostimulants, and even vaccine adjuvants may already fall in the TIbV category. This may apply to increase immunogenicity of novel vaccine design approaches based on small molecules, like those achieved by reverse vaccinology.
β-Glucan as Trained Immunity-Based Adjuvants for Rabies Vaccines in Dogs
The mechanisms of trained immunity have been extensively described and the beneficial effects are starting to be deciphered in settings. Prototypical compounds inducing trained immunity, such as β-glucans, act through epigenetic reprogramming and metabolic changes of innate immune cells. The recent advances in this field have opened new areas for the development of Trained immunity-based adjuvants (TIbAs). In this study, we assessed in dogs the potential immune training effects of β-glucans as well as their capacity to enhance the adaptive immune response of an inactivated rabies vaccine (Rabisin ). Injection of β-glucan from was performed 1 month before vaccination with Rabisin supplemented or not with the same β-glucan used as adjuvant. Trained innate immunity parameters were assessed during the first month of the trial. The second phase of the study was focused on the ability of β-glucan to enhance adaptive immune responses measured by multiple immunological parameters. B and T-cell specific responses were monitored to evaluate the immunogenicity of the rabies vaccine adjuvanted with β-glucan or not. Our preliminary results support that adjuvantation of Rabisin vaccine with β-glucan elicit a higher B-lymphocyte immune response, the prevailing factor of protection against rabies. β-glucan also tend to stimulate the T cell response as shown by the cytokine secretion profile of PBMCs re-stimulated Our data are providing new insights on the impact of trained immunity on the adaptive immune response to vaccines in dogs. The administration of β-glucan, 1 month before or simultaneously to Rabisin vaccination give promising results for the generation of new TIbA candidates and their potential to provide increased immunogenicity of specific vaccines.
Effector-Triggered Trained Immunity: An Innate Immune Memory to Microbial Virulence Factors?
In the last decade, a major dogma in the field of immunology has been called into question by the identification of a cell autonomous innate immune memory. This innate immune memory (also named trained immunity) was found to be mostly carried by innate immune cells and to be characterized by an exacerbated inflammatory response with a heightened expression of proinflammatory cytokines, including TNF-α, IL-6 and IL-1β. Unlike the vast majority of cytokines, IL-1β is produced as a proform (pro-IL-1β) and requires a proteolytic cleavage to exert its biological action. This cleavage takes place mainly within complex molecular platforms named inflammasomes. These platforms are assembled upon both the infectious or sterile activation of NOD-like receptors (NLRs), thereby allowing for the recruitment and activation of caspases and the subsequent maturation of pro-IL-1β into IL-1β. The NLRP3 inflammasome has recently been implicated both in western diet-induced trained immunity, and in the detection of microbial virulence factors (effector-triggered immunity (ETI)). Here, we will attempt to link these two immune processes and provide arguments to hypothesize the existence of trained immunity triggered by microbial virulence factors (effector-triggered trained immunity (ETTI)).
The Role of Pattern Recognition Receptors in Epigenetic and Metabolic Reprogramming: Insights into Trained Immunity
Pattern recognition receptors (PRRs) function as pivotal components of the innate immune system by orchestrating trained immunity through dynamic epigenetic and metabolic reprogramming. Recent discoveries demonstrate that PRRs not only detect pathogens but also actively regulate immune cell metabolism and transcriptional landscapes, thereby potentiating the speed and magnitude of defensive responses upon secondary challenges. These functional adaptations are coordinated through evolutionarily conserved signaling cascades that establish persistent immunological modifications at cellular and systemic levels. Nevertheless, despite substantial advances in characterizing PRR-driven immune activation, the molecular mechanisms governing their role in innate immune memory formation remain incompletely elucidated. This review systematically explores emerging paradigms of PRR-mediated epigenetic remodeling and metabolic rewiring, with particular emphasis on their mechanistic integration into trained immunity. We critically assess current evidence, identify unresolved questions regarding signal transduction specificity and memory maintenance, and propose novel methodological approaches to decipher the multilayered regulatory networks of innate immune adaptation. By elucidating these processes, our analysis establishes a conceptual framework for developing immunomodulatory therapies and leveraging trained immunity in precision medicine applications.
The mechanisms and cross-protection of trained innate immunity
In recent years, the traditional cognition of immunological memory being specific to adaptive immunity has been challenged. Innate immunity can mount enhanced responsiveness upon secondary stimulation, and a phenomenon is termed trained innate immunity. Trained innate immunity is orchestrated by distinct metabolic and epigenetic reprogramming in both circulating myeloid cells and myeloid progenitor cells in bone marrow, leading to long-term resistance to related and non-related pathogens infections. The induction of trained innate immunity can also polarize innate immune cells towards a hyperresponsive phenotype in the tumor microenvironment to exert antitumor effects. This review will discuss the current understanding of innate immune memory and the mechanisms during the induction of innate immunity, including signaling pathways, metabolic changes, and epigenetic rewriting. We also provide an overview of cross-protection against infectious diseases and cancers based on trained innate immunity.
Weight cycling induces innate immune memory in adipose tissue macrophages
Weight loss improves obesity-associated diabetes risk. However, most individuals regain weight, which worsens the risk of developing diabetes and cardiovascular disease. We previously reported that male mice retain obesity-associated immunological changes even after weight loss, suggesting that immune cells may remember the state of obesity. Therefore, we hypothesized that cycles of weight gain and loss, otherwise known as weight cycling, can induce innate memory in adipose macrophages. Bone marrow derived macrophages were primed with palmitic acid or adipose tissue conditioned media in a culture model of innate immune memory. Mice also put on low fat or high fat diets over 14-27 weeks to induce weight gain, weight loss, and weight cycling. Priming cells with palmitic acid or adipose tissue conditioned media from obese mice increased maximal glycolysis and oxidative phosphorylation and increased LPS-induced TNFα and IL-6 production. Palmitic acid effects were dependent on TLR4 and impaired by methyltransferase inhibition and AMPK activation. While weight loss improved glucose tolerance in mice, adipose macrophages were primed for greater activation to subsequent stimulation by LPS as measured by cytokine production. In the model of weight cycling, adipose macrophages had elevated metabolism and secreted higher levels of basal TNFα, suggesting that weight loss can also prime macrophages for heighted activation to weight regain. Together, these data suggest that weight loss following obesity can prime adipose macrophages for enhanced inflammation upon weight regain. This innate immune memory response may contribute to worsened glucose tolerance following weight cycling.
Trained Innate Immunity in Animal Models of Cardiovascular Diseases
Acquisition of immunological memory is an important evolutionary strategy that evolved to protect the host from repetitive challenges from infectious agents. It was believed for a long time that memory formation exclusively occurs in the adaptive part of the immune system with the formation of highly specific memory T cells and B cells. In the past 10–15 years, it has become clear that innate immune cells, such as monocytes, natural killer cells, or neutrophil granulocytes, also have the ability to generate some kind of memory. After the exposure of innate immune cells to certain stimuli, these cells develop an enhanced secondary response with increased cytokine secretion even after an encounter with an unrelated stimulus. This phenomenon has been termed trained innate immunity (TI) and is associated with epigenetic modifications (histone methylation, acetylation) and metabolic alterations (elevated glycolysis, lactate production). TI has been observed in tissue-resident or circulating immune cells but also in bone marrow progenitors. Risk-factors for cardiovascular diseases (CVDs) which are associated with low-grade inflammation, such as hyperglycemia, obesity, or high salt, can also induce TI with a profound impact on the development and progression of CVDs. In this review, we briefly describe basic mechanisms of TI and summarize animal studies which specifically focus on TI in the context of CVDs.
Parenteral BCG vaccine induces lung-resident memory macrophages and trained immunity via the gut–lung axis
Aside from centrally induced trained immunity in the bone marrow (BM) and peripheral blood by parenteral vaccination or infection, evidence indicates that mucosal-resident innate immune memory can develop via a local inflammatory pathway following mucosal exposure. However, whether mucosal-resident innate memory results from integrating distally generated immunological signals following parenteral vaccination/infection is unclear. Here we show that subcutaneous Bacillus Calmette–Guérin (BCG) vaccination can induce memory alveolar macrophages (AMs) and trained immunity in the lung. Although parenteral BCG vaccination trains BM progenitors and circulating monocytes, induction of memory AMs is independent of circulating monocytes. Rather, parenteral BCG vaccination, via mycobacterial dissemination, causes a time-dependent alteration in the intestinal microbiome, barrier function and microbial metabolites, and subsequent changes in circulating and lung metabolites, leading to the induction of memory macrophages and trained immunity in the lung. These data identify an intestinal microbiota-mediated pathway for innate immune memory development at distal mucosal tissues and have implications for the development of next-generation vaccine strategies against respiratory pathogens.Parenteral BCG vaccination has been shown to drive innate immune memory responses that can affect the response to pathogens other than mycobacteria. Here the authors show an innate immune memory mechanism whereby subcutaneous BCG vaccination alters the intestinal microbiome and in turn can train alveolar macrophages in the lungs.