Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
67
result(s) for
"trans-activation"
Sort by:
Cysteine Proteases: Modes of Activation and Future Prospects as Pharmacological Targets
by
Pandey, Kailash C.
,
Dixit, Rajnikant
,
Verma, Sonia
in
Antigen presentation
,
Auto-catalysis
,
Catalysis
2016
Proteolytic enzymes are crucial for a variety of biological processes in organisms ranging from lower (virus, bacteria, and parasite) to the higher organisms (mammals). Proteases cleave proteins into smaller fragments by catalyzing peptide bonds hydrolysis. Proteases are classified according to their catalytic site, and distributed into four major classes: cysteine proteases, serine proteases, aspartic proteases, and metalloproteases. This review will cover only cysteine proteases, papain family enzymes which are involved in multiple functions such as extracellular matrix turnover, antigen presentation, processing events, digestion, immune invasion, hemoglobin hydrolysis, parasite invasion, parasite egress, and processing surface proteins. Therefore, they are promising drug targets for various diseases. For preventing unwanted digestion, cysteine proteases are synthesized as zymogens, and contain a prodomain (regulatory) and a mature domain (catalytic). The prodomain acts as an endogenous inhibitor of the mature enzyme. For activation of the mature enzyme, removal of the prodomain is necessary and achieved by different modes. The pro-mature domain interaction can be categorized as protein-protein interactions (PPIs) and may be targeted in a range of diseases. Cysteine protease inhibitors are available that can block the active site but no such inhibitor available yet that can be targeted to block the pro-mature domain interactions and prevent it activation. This review specifically highlights the modes of activation (processing) of papain family enzymes, which involve auto-activation, trans-activation and also clarifies the future aspects of targeting PPIs to prevent the activation of cysteine proteases.
Journal Article
Trans-activation between 7TM domains: implication in heterodimeric GABAB receptor activation
by
Vol, Claire
,
Monnier, Carine
,
Lamarque, Laurent
in
allosteric modulators
,
Allosteric Regulation
,
Animals
2011
Seven‐transmembrane domain (7TM) receptors have important functions in cell–cell communication and can assemble into dimers or oligomers. Such complexes may allow specific functional cross‐talk through
trans
‐activation of interacting 7TMs, but this hypothesis requires further validation. Herein, we used the GABA
B
receptor, which is composed of two distinct subunits, GABA
B1
, which binds the agonist, and GABA
B2
, which activates G proteins, as a model system. By using a novel orthogonal‐labelling approach compatible with time‐resolved FRET and based on ACP‐ and SNAP‐tag technologies to verify the heterodimerization of wild‐type and mutated GABA
B
subunits, we demonstrate the existence of a direct allosteric coupling between the 7TMs of GABA
B
heterodimers. Indeed, a GABA
B
receptor, in which the GABA
B2
extracellular domain was deleted, was still capable of activating G proteins. Furthermore, synthetic ligands for the GABA
B2
7TM could increase agonist affinity at the GABA
B1
subunit in this mutated receptor. In addition to bringing new information on GABA
B
receptor activation, these data clearly demonstrate the existence of direct
trans
‐activation between the 7TM of two interacting proteins.
G‐protein‐coupled receptors are seven‐transmembrane domain proteins that can assemble into dimers or higher oligomers. This study reveals that agonist binding to one subunit of the GABA B receptor dimer results in the activation of the other subunit via direct
trans
‐activation between the 7TM domains.
Journal Article
Cytoplasmic TDP43 Binds microRNAs: New Disease Targets in Amyotrophic Lateral Sclerosis
by
Feldman, Eva L.
,
Walter, Nils G.
,
Figueroa-Romero, Claudia
in
Amyotrophic lateral sclerosis
,
Cellular Neuroscience
,
Cytoplasm
2020
Amyotrophic lateral sclerosis (ALS) is a progressive, fatal, and incurable neurodegenerative disease. Recent studies suggest that dysregulation of gene expression by microRNAs (miRNAs) may play an important role in ALS pathogenesis. The reversible nature of this dysregulation makes miRNAs attractive pharmacological targets and a potential therapeutic avenue. Under physiological conditions, miRNA biogenesis, which begins in the nucleus and includes further maturation in the cytoplasm, involves trans-activation response element DNA/RNA-binding protein of 43 kDa (TDP43). However, TDP43 mutations or stress trigger TDP43 mislocalization and inclusion formation, a hallmark of most ALS cases, that may lead to aberrant protein/miRNA interactions in the cytoplasm. Herein, we demonstrated that TDP43 exhibits differential binding affinity for select miRNAs, which prompted us to profile miRNAs that preferentially bind cytoplasmic TDP43. Using cellular models expressing TDP43 variants and miRNA profiling analyses, we identified differential levels of 65 cytoplasmic TDP43-associated miRNAs. Of these, approximately 30% exhibited levels that differed by more than 3-fold in the cytoplasmic TDP43 models relative to our control model. The hits included both novel miRNAs and miRNAs previously associated with ALS that potentially regulate several predicted genes and pathways that may be important for pathogenesis. Accordingly, these findings highlight specific miRNAs that may shed light on relevant disease pathways and could represent potential biomarkers and reversible treatment targets for ALS.
Journal Article
Activation of Trk neurotrophin receptors by glucocorticoids provides a neuroprotective effect
by
Chao, Moses V
,
Jeanneteau, Freddy
,
Garabedian, Michael J
in
Animals
,
Antibodies
,
Behavioral neuroscience
2008
Glucocorticoids (GCs) display both protective and destructive effects in the nervous system. In excess, GCs produce neuronal damage after stress or brain injury; however, the neuroprotective effects of adrenal steroids also have been reported. The mechanisms that account for the positive actions are not well understood. Here we report that GCs can selectively activate Trk receptor tyrosine kinases after in vivo administration in the brain and in cultures of hippocampal and cortical neurons. Trk receptors are normally activated by neurotrophins, such as NGF and brain-derived neurotrophic factor, but the activation of Trk receptors by GCs does not depend on increased production of neurotrophins. Other tyrosine kinase receptors, such as EGF and FGF receptors, were not activated by GCs. The ability of GCs to increase Trk receptor activity resulted in the neuroprotection of neurons deprived of trophic support and could be modulated by steroid-converting enzymes. Pharmacological and shRNA experiments indicate that Trk receptor activation by GCs depends on a genomic action of the GC receptor. The ability of GCs to promote Trk receptor activity represents a molecular mechanism that integrates the actions of GCs and neurotrophins.
Journal Article
Transcriptional Activation Mechanisms and Target Genes of the Oncogene Product Tax of Human T-Cell Leukemia Virus Type 1
2025
Human T-cell leukemia virus type 1 (HTLV-1) is the causative agent of adult T-cell leukemia/lymphoma (ATL). The trans-activator protein Tax of HTLV-1 is thought to play a crucial role in the early-stage transformation of the virus-infected cells. Tax is a multi-functional protein and modulates cellular signaling pathways that promote proliferation and survival of HTLV-1-infected cells, primarily through the trans-activation of cellular target genes. Tax interacts with a variety of host cell factors including signal transducers and transcription factors, leading to the activation of transcription factors such as CREB, NF-κB, and SRF and activates both its own promoter and those of a variety of host cellular genes. Tax activates its own promoter mainly through CREB and host cellular genes through NF-κB, SRF, and CREB. Accumulating evidence indicates that the Tax-mediated trans-activation of target genes through NF-κB plays an essential role in the transformation of HTLV-1 infected cells. However, the repertoire of Tax target genes, especially those crucial for leukemogenesis, are not known in detail. In this review, we summarize transcriptional activation mechanisms and target genes of Tax, especially focusing on transformation, to facilitate understanding of the underlying mechanisms of leukemogenesis induced by HTLV-1 infection.
Journal Article
Cloning and Functional Analysis of BcMYB101 Gene Involved in Leaf Development in Pak Choi (Brassica rapa ssp. Chinensis)
by
Hou, Hualan
,
Zhang, Changwei
,
Hou, Xilin
in
Abscisic acid
,
Amino Acid Motifs
,
Amino Acid Sequence
2020
As one of the largest transcription factor families, MYB transcription factors are widely present, and they are involved in a diverse range of physiological activities in plants, such as leaf development. GAMYB genes belong to the R2R3-MYB subfamily, which includes the MYB33/65/101 gene, and these genes are studied well in seed germination and flowering, but their roles in leaf development are poorly understood. In the current study, we isolated a GAMYB transcription factor from pak choi, BcMYB101, and analyzed its characteristics and function. The sequence structure analysis indicated that BcMYB101 has a highly conserved R2R3 DNA-binding domain in the N-terminal region and three GAMYB-specific motifs (Box1, Box2, and Box3). The expression pattern of diverse tissues revealed that BcMYB101 has a higher transcript level in the petiole, leaf, root, and floral organs. Furthermore, the expression level was significantly elevated after GA (gibberellin) treatment, suggesting that the BcMYB101 response was positively regulated by GA. Subcellular localization exhibited that BcMYB101 was only present in the nuclear region, consistent with the characterization of the transcription factor. The overexpression of BcMYB101 elucidated that BcMYB101 increased leaf number and resulted in downward-curling cauline leaves. Moreover, the virus-induced BcMYB101 silencing displayed that BcMYB101 is involved in the regulation of curly leaves. Furthermore, we discovered that BcMYB101 has two trans-activation activities and one interaction protein, BcTCH4, using a trans-activation activity assay and a yeast two-hybrid assay, respectively. In this study, we firstly isolated the BcMYB101 gene and explored its function in leaf development, thereby providing a solid foundation for further research on the regulatory mechanism of leaf shape in Brassica or other species.
Journal Article
Redox Signaling in Endosomes Using the Example of EGF Receptors: A Graphical Review
by
Hebchen, Dana Maureen
,
Schröder, Katrin
in
Adapter proteins
,
Cell organelles
,
Cellular signal transduction
2024
Early endosomes represent first-line sorting compartments or even organelles for internalized molecules. They enable the transport of molecules or ligands to other compartments of the cell, such as lysosomes, for degradation or recycle them back to the membrane by various mechanisms. Moreover, early endosomes function as signaling and scaffolding platforms to initiate or prolong distinct signaling pathways. Accordingly, early endosomes have to be recognized as either part of a degradation or recycling pathway. The physical proximity of many ligand-binding receptors with other membrane-bound proteins or complexes such as NADPH oxidases may result in an interaction of second messengers, like reactive oxygen species (ROS) and early endosomes, that promote the correct recognition of individual early endosomes. In fact, redoxosomes comprise an endosomal subsection of signaling endosomes. One example of such potential interaction is epidermal growth factor receptor (EGFR) signaling. Here we summarize recent findings on EGFR signaling as a well-studied example for receptor trafficking and trans-activation and illustrate the interplay between cellular and endosomal ROS.
Journal Article
Regulation by phosphorylation of the relative affinities of the N-terminal transactivation domains of p53 for p300 domains and Mdm2
2009
The transcriptional activity of the tumour suppressor, p53, requires direct binding between its transactivation domain (TAD, 1–57) and the transcriptional coactivator, p300. We systematically assessed the role of TAD phosphorylation on binding of the p300 domains CH3, Taz1, Kix and IBiD. Thr18 phosphorylation increased the affinity up to sevenfold for CH3 and Taz1, with smaller increases from phosphorylation of Ser20, Ser15, Ser37, Ser33, Ser46 and Thr55. Binding of Kix and IBiD was less sensitive to phosphorylation. Strikingly, hepta-phosphorylation of all Ser and Thr residues increased binding 40- and 80-fold with CH3 and Taz1, respectively, but not with Kix or IBiD. Substitution of all phospho-sites with aspartates partially mimicked the effects of hepta-phosphorylation. Mdm2, the main negative regulator of p53, competes with p300 for binding to TAD. Binding of Mdm2 to TAD was reduced significantly only on phosphorylation of Thr18 (sevenfold) or by hepta-phosphorylation (24-fold). The relative affinities of Mdm2 and p300 for p53 TAD can thus be changed by up to three orders of magnitude by phosphorylation. Accordingly, phosphorylation of Thr18 and hepta-phosphorylation dramatically shifts the balance towards favouring the binding of p300 with p53, and is thus likely to be an important factor in its regulation.
Journal Article
Activation of the CDK7 Gene, Coding for the Catalytic Subunit of the Cyclin-Dependent Kinase (CDK)-Activating Kinase (CAK) and General Transcription Factor II H, by the Trans-Activator Protein Tax of Human T-Cell Leukemia Virus Type-1
by
Ohtani, Kiyoshi
,
Bradford, Andrew P.
,
Kurayoshi, Kenta
in
adults
,
Cell activation
,
Cell cycle
2024
Human T-cell leukemia virus type-1 (HTLV-1) is the etiological agent of adult T-cell leukemia (ATL). The trans-activator protein Tax of HTLV-1 plays crucial roles in leukemogenesis by promoting proliferation of virus-infected cells through activation of growth-promoting genes. However, critical target genes are yet to be elucidated. We show here that Tax activates the gene coding for cyclin-dependent kinase 7 (CDK7), the essential component of both CDK-activating kinase (CAK) and general transcription factor TFIIH. CAK and TFIIH play essential roles in cell cycle progression and transcription by activating CDKs and facilitating transcriptional initiation, respectively. Tax induced CDK7 gene expression not only in human T-cell lines but also in normal peripheral blood lymphocytes (PHA-PBLs) along with increased protein expression. Tax stimulated phosphorylation of CDK2 and RNA polymerase II at sites reported to be mediated by CDK7. Tax activated the CDK7 promoter through the NF-κB pathway, which mainly mediates cell growth promotion by Tax. Knockdown of CDK7 expression reduced Tax-mediated induction of target gene expression and cell cycle progression. These results suggest that the CDK7 gene is a crucial target of Tax-mediated trans-activation to promote cell proliferation by activating CDKs and transcription.
Journal Article
Trans-Activation of the Coactivator-Associated Arginine Methyltransferase 1 (Carm1) Gene by the Oncogene Product Tax of Human T-Cell Leukemia Virus Type 1
2024
Human T-cell leukemia virus type 1 (HTLV-1) is the causative agent of adult T-cell leukemia/lymphoma. The oncogene product Tax of HTLV-I is thought to play crucial roles in leukemogenesis by promoting proliferation of the virus-infected cells through activation of growth-promoting genes. These genes code for growth factors and their receptors, cytokines, cell adhesion molecules, growth signal transducers, transcription factors and cell cycle regulators. We show here that Tax activates the gene coding for coactivator-associated arginine methyltransferase 1 (CARM1), which epigenetically enhances gene expression through methylation of histones. Tax activated the Carm1 gene and increased protein expression, not only in human T-cell lines but also in normal peripheral blood lymphocytes (PHA-PBLs). Tax increased R17-methylated histone H3 on the target gene IL-2Rα, concomitant with increased expression of CARM1. Short hairpin RNA (shRNA)-mediated knockdown of CARM1 decreased Tax-mediated induction of IL-2Rα and Cyclin D2 gene expression, reduced E2F activation and inhibited cell cycle progression. Tax acted via response elements in intron 1 of the Carm1 gene, through the NF-κB pathway. These results suggest that Tax-mediated activation of the Carm1 gene contributes to leukemogenic target-gene expression and cell cycle progression, identifying the first epigenetic target gene for Tax-mediated trans-activation in cell growth promotion.
Journal Article