Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
LanguageLanguage
-
SubjectSubject
-
Item TypeItem Type
-
DisciplineDiscipline
-
YearFrom:-To:
-
More FiltersMore FiltersIs Peer Reviewed
Done
Filters
Reset
6,166
result(s) for
"transdermal drug delivery"
Sort by:
Increased skin permeation efficiency of imperatorin via charged ultradeformable lipid vesicles for transdermal delivery
2018
The aim of this work was to develop a novel vesicular carrier, ultradeformable liposomes (UDLs), to expand the applications of the Chinese herbal medicine, imperatorin (IMP), and increase its transdermal delivery.
In this study, we prepared IMP-loaded UDLs using the thin-film hydration method and evaluated their encapsulation efficiency, vesicle deformability, skin permeation, and the amounts accumulated in different depths of the skin in vitro. The influence of different charged surfactants on the properties of the UDLs was also investigated.
The results showed that the UDLs containing cationic surfactants had high entrapment efficiency (60.32%±2.82%), an acceptable particle size (82.4±0.65 nm), high elasticity, and prolonged drug release. The penetration rate of IMP in cationic-UDLs was 3.45-fold greater than that of IMP suspension, which was the highest value among the vesicular carriers. UDLs modified with cationic surfactant also showed higher fluorescence intensity in deeper regions of the epidermis.
The results of our study suggest that cationic surfactant-modified UDLs could increase the transdermal flux, prolong the release of the drug, and serve as an effective dermal delivery system for IMP.
Journal Article
Enhanced transdermal delivery of lornoxicam by nanostructured lipid carrier gels modified with polyarginine peptide for treatment of carrageenan-induced rat paw edema
by
Lv, Qingzhi
,
Zhang, Jing
,
Tian, Baocheng
in
Anti-inflammatory agents
,
anti-inflammatory effect
,
Arginine
2019
Nanostructured lipid carriers (NLCs) are emerging as attractive drug carriers in transdermal drug delivery. The surface modification of NLCs with cell-penetrating peptides (CPPs) can enhance the skin permeation of drugs.
The objective of the current study was to evaluate the ability of the cell-penetrating peptide (CPP) polyarginine to translocate NLCs loaded with lornoxicam (LN) into the skin layers and to evaluate its anti-inflammatory effect.
The NLCs were prepared using an emulsion evaporation and low temperature solidification technique using glyceryl monostearates, triglycerides, DOGS-NTA-Ni lipids and surfactants, and then six histidine-tagged polyarginine containing 11 arginine (R11) peptides was modified on the surface of NLCs.
The developed NLCs formulated with LN and R11 (LN-NLC-R11) were incorporated into 2% HPMC gels. NLCs were prepared with a particle size of (121.81±3.61)-(145.72±4.78) nm, and the zeta potential decreased from (-30.30±2.07) to (-14.66±0.74) mV after the modification of R11 peptides. The encapsulation efficiency and drug loading were (74.61±1.13) % and (7.92±0.33) %, respectively, regardless of the surface modification. Cellular uptake assays using HaCaT cells suggested that the NLC modified with R11 (0.02%, w/w) significantly enhanced the cell internalization of nanoparticles relative to unmodified NLCs (
<0.05 or
<0.01). An in vitro skin permeation study showed better permeation-enhancing ability of R11 (0.02%, w/w) than that of other content (0.01% or 0.04%). In carrageenan-induced rat paw edema models, LN-NLC-R11 gels inhibited rat paw edema and the production of inflammatory cytokines compared with LN-NLC gels and LN gels (
<0.01).
In our investigation, it was strongly demonstrated that the surface modification of NLC with R11 enhanced the translocation of LN across the skin, thereby alleviating inflammation.
Journal Article
Effects of Carbopol ® 934 proportion on nanoemulsion gel for topical and transdermal drug delivery: a skin permeation study
by
Hao, Chao-Shuang
,
Ouyang, Wu-Qing
,
Wei, Yun-Peng
in
Acrylates - chemistry
,
Acrylates - metabolism
,
Administration, Cutaneous
2016
Nanoemulsions (NEs) are used as transdermal drug delivery systems for systematic therapeutic purposes. We hypothesized that the skin permeation profile of an NE could be modulated by incorporating it into a hydrogel containing differing proportions of thickening agent. The objectives of this study were as follows: 1) to determine the stability and skin irritability of NE gels (NGs) containing 1%, 2%, and 3% (w/w) Carbopol
934 (CP934) (termed NG1, NG2, and NG3, respectively); 2) to compare the skin permeation profiles and drug deposition patterns of the NGs; and 3) to visualize the drug delivery routes of the NGs. Terbinafine and citral were incorporated into the NGs as model drugs. Ex vivo skin permeation tests indicated that the percutaneous flux rates of terbinafine decreased in the order NE (215 μg/cm
) > NG1 (213 μg/cm
) > NG2 (123 μg/cm
) > NG3 (74.3 μg/cm
). The flux rates of citral decreased in the order NE (1,026 μg/cm
) > NG1 (1,021 μg/cm
) > NG2 (541 μg/cm
) > NG3 (353 μg/cm
). The NGs accumulated greater amounts of the drugs in the stratum corneum and less in the epidermis/dermis than did the NE (
<0.05) over a period of 12 h. Laser scanning confocal microscopy indicated that the NGs altered the main drug delivery routes from skin appendages to intercellular paths. Histological images suggested that perturbations to the skin structure, specifically the size of the epidermal intercellular spaces and the separation distance of dermal collagen bundles, could be significantly minimized by increasing the proportion of CP934. These results suggest that adjustments of the CP934 proportions can be used to modulate the skin permeation profiles of NGs for specific therapeutic purposes.
Journal Article
Lipid nanoparticles loading triptolide for transdermal delivery: mechanisms of penetration enhancement and transport properties
by
Gu, Yongwei
,
Yang, Meng
,
Wang, Ting
in
Administration, Cutaneous
,
Bioavailability
,
Biotechnology
2018
Background
In recent years, nanoparticles (NPs) including nanostructured lipid carries (NLC) and solid lipid nanoparticles (SLN) captured an increasing amount of attention in the field of transdermal drug delivery system. However, the mechanisms of penetration enhancement and transdermal transport properties of NPs are not fully understood. Therefore, this work applied different platforms to evaluate the interactions between skin and NPs loading triptolide (TPL, TPL-NLC and TPL-SLN). Besides, NPs labeled with fluorescence probe were tracked after administration to investigate the dynamic penetration process in skin and skin cells. In addition, ELISA assay was applied to verify the in vitro anti-inflammatory effect of TPL-NPs.
Results
Compared with the control group, TPL-NPs could disorder skin structure, increase keratin enthalpy and reduce the SC infrared absorption peak area. Besides, the work found that NPs labeled with fluorescence probe accumulated in hair follicles and distributed throughout the skin after 1 h of administration and were taken into HaCaT cells cytoplasm by transcytosis. Additionally, TPL-NLC could effectively inhibit the expression of IL-4, IL-6, IL-8, IFN-γ, and MCP-1 in HaCaT cells, while TPL-SLN and TPL solution can only inhibit the expression of IL-6.
Conclusions
TPL-NLC and TPL-SLN could penetrate into skin in a time-dependent manner and the penetration is done by changing the structure, thermodynamic properties and components of the SC. Furthermore, the significant anti-inflammatory effect of TPL-NPs indicated that nanoparticles containing NLC and SLN could serve as safe prospective agents for transdermal drug delivery system.
Journal Article
Transdermal delivery of Minoxidil using HA-PLGA nanoparticles for the treatment in alopecia
by
Han, Dong Wook
,
Jeong, Woo Yeup
,
Kim, Ki Su
in
Alopecia
,
Biomaterials
,
Chemistry and Materials Science
2019
Background
Alopecia has become a very common disease that many people around the world are suffered. Minoxidil (MXD) is the most well-known commercialized drug in its treatment. However, in the case of MXD administration, there are some problems with low efficiency of transdermal delivery and additional side effects.
Method
MXD and Rhodamine B (Rho B) are encapsulated in poly(Lactide-co-Glycolide) grafted hyaluronate nanoparticles (HA-PLGA/MXD NPs, HA-PLGA/Rho B NPs) which is prepared with W/O/W solvent evaporation method. After then, the investigation is carried out to confirm the feasibility of NPs in alopecia treatment.
Results
Both of HA-PLGA/MXD NPs and HA-PLGA/Rho B NPs are successfully prepared. In addition, it is confirmed that HA-PLGA NPs sufficiently delivered to cells without any significant cytotoxicity by cell viability, cellular uptake and skin permeation test.
Conclusion
Taken together, HA-PLGA NPs as a transdermal delivery carrier to hair follicle cells can be exploited to develop the efficient and effective platform of transdermal drug delivery for the treatment of various diseases.
Journal Article
Finite Element Analysis for Predicting Skin Pharmacokinetics of Nano Transdermal Drug Delivery System Based on the Multilayer Geometry Model
by
Gu, Yongwei
,
Yang, Meng
,
Gu, Qing
in
Acetophenones - administration & dosage
,
Acetophenones - pharmacokinetics
,
Administration, Cutaneous
2020
Skin pharmacokinetics is an indispensable indication for studying the drug fate after administration of transdermal drug delivery systems (TDDS). However, the heterogeneity and complex skin structured with stratum corneum, viable epidermis, dermis, and subcutaneous tissue inevitably leads the drug diffusion coefficient (
p) to vary depending on the skin depth, which seriously limits the development of TDDS pharmacokinetics in full thickness skin.
A multilayer geometry skin model was established and the
p of drug in SC, viable epidermis, and dermis was obtained using the technologies of molecular dynamics simulation, in vitro permeation experiments, and in vivo microdialysis, respectively. Besides, finite element analysis (FEA) based on drug
ps in different skin layers was applied to simulate the paeonol nanoemulsion (PAE-NEs) percutaneous dynamic penetration process in two and three dimensions. In addition, PAE-NEs skin pharmacokinetics profile obtained by the simulation was verified by in vivo experiment.
Coarse-grained modeling of molecular dynamic simulation was successfully established and the
p of PAE in SC was 2.00×10
cm
/h. The
p of PAE-NE in viable epidermis and in dermis detected using penetration test and microdialysis probe technology, was 1.58×10
cm
/h and 3.20×10
cm
/h, respectively. In addition, the results of verification indicated that PAE-NEs skin pharmacokinetics profile obtained by the simulation was consistent with that by in vivo experiment.
This study demonstrated that the FEA combined with the established multilayer geometry skin model could accurately predict the skin pharmacokinetics of TDDS.
Journal Article
Sonophoresis Enhanced Transdermal Delivery of Cisplatin in the Xenografted Tumor Model of Cervical Cancer
2020
Transdermal drug delivery system has been researched for a long time because of its advantage in decreasing side effects such as nausea, vomiting, and gastrointestinal disturbance. Sonophoresis has been shown to be very effective in promoting the transdermal delivery of drugs. This study is on purpose to research the feasibility of sonophoresis promoting cisplatin in the treatment of cervical cancer and the optimum drug delivery mode.
Thirty-two female nude-mice model of cervical cancer were randomly divided into 4 groups (n=8 in each group): control group without any intervention, low, medium and high concentration groups were treated with the corresponding cisplatin concentrations of 0.2mg/mL, 0.4mg/mL and 0.8mg/mL, respectively, with concurrent sonophoresis applied on the skin of local tumor, 1 mL at a time, once a day for a total of 5 days. Therapeutic pulsed ultrasound (TPU) was 1.0 MHz, 2.0 W/cm
and 60-min duration. Weight of mice and tumor diameters were measured every day during the intervention. The concentration of cisplatin in tumors was detected by HPLC. Meanwhile, tumor, skin, liver and kidney gross structures and ultrastructure were observed in order to evaluate the effectiveness and safety of experimental conditions. In addition, apoptosis and proliferation-related factors (MPO, Caspase-3, PCNA) were detected by immunohistochemistry, immunofluorescence and TUNEL assay.
The weight of nude mice in each group showed an increasing trend, except for a decrease of weight in the 0.8 mg/mL group. No obvious tumor inhibition effect was observed. Cisplatin was detected in the 0.4 mg/mL group and 0.8 mg/mL group, with relative concentrations of 0.081±0.033 mg/mL and 0.111±0.021 mg/mL, respectively. Both skin and kidney inflammation were observed in the 0.8 mg/mL group. The expression of MPO, caspase-3 and TUNEL was concentration dependent, with the highest expression in the 0.8 mg/mL group, followed by the 0.4 mg/mL group, with no significant differences between the control and the 0.2 mg/mL group. PCNA was highly expressed in both the control and 0.2 mg/mL groups but decreased in the 0.4 mg/mL and 0.8 mg/mL groups.
Sonophoresis enhanced transdermal delivery of cisplatin in a xenograft tumor model of cervical cancer. Considering the occurrence of skin inflammation and renal injury caused by cisplatin, the recommended concentration to be administered is 0.4mg/mL.
Journal Article
Controlled release of optimized electroporation enhances the transdermal efficiency of sinomenine hydrochloride for treating arthritis in vitro and in clinic
2017
Sinomenine hydrochloride (SH) is an ideal drug for the treatment of rheumatoid arthritis and osteoarthritis. However, high plasma concentration of systemically administered SH can release histamine, which can cause rash and gastrointestinal side effects. Topical delivery can increase SH concentration in the synovial fluid without high plasma level, thus minimizing systemic side effects. However, passive diffusion of SH was found to be inefficient because of the presence of the stratum corneum layer. Therefore, an effective method is required to compensate for the low efficiency of SH passive diffusion. In this study, transdermal experiments in vitro and clinical tests were utilized to explore the optimized parameters for electroporation of topical delivery for SH. Fluorescence experiment and hematoxylin and eosin staining analysis were performed to reveal the mechanism by which electroporation promoted permeation. In vitro, optimized electroporation parameters were 3 KHz, exponential waveform, and intensity 10. Using these parameters, transdermal permeation of SH was increased by 1.9-10.1 fold in mice skin and by 1.6-47.1 fold in miniature pig skin compared with passive diffusion. After the electroporation stimulation, the intercellular intervals and epidermal cracks in the skin increased. In clinical tests, SH concentration in synovial fluid was 20.84 ng/mL after treatment with electroporation. Therefore, electroporation with optimized parameters could significantly enhance transdermal permeation of SH. The mechanism by which electroporation promoted permeation was that the electronic pulses made the skin structure looser. To summarize, electroporation may be an effective complementary method for transdermal permeation of SH. The controlled release of electroporation may be a promising clinical method for transdermal drug administration.
Journal Article
Improvement of a slimming cream's efficacy using a novel fabric as a transdermal drug delivery system: An in vivo and in vitro study
2020
Penetration of any compound into the body from the outside is prevented primarily by the corneal layer of the epidermis. The only way to circumvent the properties of the corneal layer is to disrupt it. Currently, transdermal systems can currently only deliver drugs that are of low molecular weight. The purpose of the present study was to assess the improvement of the slimming cream's efficacy using a novel fabric, with the aim of developing an improved method for transdermal drug delivery. The current study was conducted on four groups of guinea pigs. The control group was untreated, whereas the test groups were treated with either slimming cream and no fabric, slimming cream with 100% cotton fabric or slimming cream with the novel fabric. Ultrasound and microscopic histological analysis were used to assess animals. The results demonstrated that compared with the other groups, the novel fabric group demonstrated the greatest reductions in fat layer thickness, adipocyte size and number and proliferator-activated receptor-γ levels in adipose tissue. Furthermore, the novel fabric also enhanced the transdermal delivery of rhodamine B base and caffeine penetration compared with the control fabric (3.18-fold). In conclusion, the results of the present study demonstrated that the novel fabric can potentially be used to enhance transdermal drug delivery.
Journal Article
Transfersomes: A Promising Nanoencapsulation Technique for Transdermal Drug Delivery
by
Titapiwatanakun, Varin
,
Chutoprapat, Romchat
,
Opatha, Shakthi Apsara Thejani
in
Arthritis
,
Bile
,
Cholesterol
2020
Transdermal delivery systems have gained much interest in recent years owing to their advantages compared to conventional oral and parenteral delivery systems. They are noninvasive and self-administered delivery systems that can improve patient compliance and provide a controlled release of the therapeutic agents. The greatest challenge of transdermal delivery systems is the barrier function of the skin’s outermost layer. Molecules with molecular weights greater than 500 Da and ionized compounds generally do not pass through the skin. Therefore, only a limited number of drugs are capable of being administered by this route. Encapsulating the drugs in transfersomes are one of the potential approaches to overcome this problem. They have a bilayered structure that facilitates the encapsulation of lipophilic and hydrophilic, as well as amphiphilic, drug with higher permeation efficiencies compared to conventional liposomes. Transfersomes are elastic in nature, which can deform and squeeze themselves as an intact vesicle through narrow pores that are significantly smaller than its size. This review aims to describe the concept of transfersomes, the mechanism of action, different methods of preparation and characterization and factors affecting the properties of transfersomes, along with their recent applications in the transdermal administration of drugs.
Journal Article