Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
16 result(s) for "transgressive overyielding"
Sort by:
The productive performance of intercropping
Crop diversification has been put forward as a way to reduce the environmental impact of agriculture without penalizing its productivity. In this context, intercropping, the planned combination of two or more crop species in one field, is a promising practice. On an average, intercropping saves land compared with the component sole crops, but it remains unclear whether intercropping produces a higher yield than the most productive single crop per unit area, i.e., whether intercropping achieves transgressive overyielding. Here, we quantified the performance of intercropping for the production of grain, calories, and protein in a global meta-analysis of several production indices. The results show that intercrops outperform sole crops when the objective is to achieve a diversity of crop products on a given land area. However, when intercropping is evaluated for its ability to produce raw products without concern for diversity, intercrops on average generate a small loss in grain or calorie yield compared with the most productive sole crop (−4%) but achieve similar or higher protein yield, especially with maize/legume combinations grown at moderate N supply. Overall, although intercropping does not achieve transgressive overyielding on average, our results show that intercropping performs well in producing a diverse set of crop products and performs almost similar to the most productive component sole crop to produce raw products, while improving crop resilience, enhancing ecosystem services, and improving nutrient use efficiency. Our study, therefore, confirms the great interest of intercropping for the development of a more sustainable agricultural production, supporting diversified diets.
Effects of species diversity on fine root productivity in diverse ecosystems: a global meta-analysis
Aim: Positive relationships between plant species diversity and above-ground productivity have been observed across a wide range of terrestrial ecosystems. Despite a critical contribution of below-ground productivity to overall terrestrial productivity, no consensus exists about the nature of the relationship between species diversity and below-ground productivity. Location: Global. Methods: We collected data from published studies conducted in natural and planted forests and experimental grassland, crop and pot systems that were purposely implemented to isolate the effects of plant species diversity from other factors, such as soil conditions and topographic features. We conducted meta-analyses of 170 observations for root biomass and 23 observations for root production, derived from 48 published studies, using weighted linear modelling with bootstrap procedures to reconcile the effects of diversity on fine root productivity. Results: We found that species mixtures had, on average 28.4% higher fine root biomass and 44.8% higher annual production than monocultures. Higher fine root biomass in species mixtures than in monocultures was consistent across natural forests, planted grasslands, croplands and pot systems, except for young planted forests. Transgressive overyielding was only evident for planted grasslands. The log response ratio of fine root biomass in species mixtures to that in respective monocultures increased with species richness across all ecosystem types, and also increased with experiment age in grasslands. Main conclusions: Our meta-analysis reveals positive effects of species diversity on below-ground productivity. Despite profound differences in environments among terrestrial ecosystems, our analysis demonstrated that below-ground productivity responds similarly to variations in species richness. Furthermore, our study also reveals shifts in the effects of diversity over time in both forests and grasslands. Future efforts are needed to further understand below-ground productivity-diversity relationships.
Effects of species diversity on fine root productivity increase with stand development and associated mechanisms in a boreal forest
1. There is a growing interest in understanding the relationship between diversity and below-ground productivity due to the critical contribution of below-ground systems to overall terrestrial productivity. Yet, the temporal (seasonal and developmental) changes in diversity effects on below-ground productivity and their underlying mechanisms remain unclear. 2. We hypothesized that (i) diversity effects on fine root productivity increase with stand development, and (ii) increased diversity effects associated with stand development result from augmented horizontal soil space utilization, increased forest floor depth for rooting, enhanced effects in nutrient-poor soil layers and/or foraging towards high nutrient availability. 3. We investigated the effects of tree species diversity on fine root productivity by sampling 18 stands dominated by single species and their mixtures in post-fire boreal forests of two stand ages (8 and 34 years following stand-replacing fire). Species evenness was significantly higher in species mixtures than in single-species-dominated stands at both age classes, while species richness did not differ across stand types and age classes. 4. We found that the annual fine root production was higher in mixtures than the mean of single-species-dominated stands in both stand ages, with a significantly higher magnitude of effects in the 34-year-old than 8-year-old stands. Mixtures had higher horizontal soil volume filling than single-species-dominated stands with a more pronounced increase in the 34-year-old than 8-year-old stands. Compared with the 8-year-old stands, the 34-year-old stands had increased forest floor depth and greater overyielding with soil depth, and their fine root productivity was more responsive to the vertical variation in soil phosphorus concentrations among soil layers. 5. Synthesis. Our results provide evidence for increasing positive diversity effects on fine root productivity with stand development in heterogeneous natural forests. Moreover, our results indicate that the increased positive diversity effects with stand development was the result of multiple mechanisms, including higher horizontal soil volume filling, a thicker forest floor layer for rooting, a higher magnitude of complementarity in nutrient-poor deep soil layers and stronger nutrient foraging towards soil layers with high nutrient concentrations in older than younger stands.
Ecosystem function enhanced by combining four functional types of plant species in intensively managed grassland mixtures: a 3-year continental-scale field experiment
A coordinated continental‐scale field experiment across 31 sites was used to compare the biomass yield of monocultures and four species mixtures associated with intensively managed agricultural grassland systems. To increase complementarity in resource use, each of the four species in the experimental design represented a distinct functional type derived from two levels of each of two functional traits, nitrogen acquisition (N 2‐fixing legume or nonfixing grass) crossed with temporal development (fast‐establishing or temporally persistent). Relative abundances of the four functional types in mixtures were systematically varied at sowing to vary the evenness of the same four species in mixture communities at each site and sown at two levels of seed density. Across multiple years, the total yield (including weed biomass) of the mixtures exceeded that of the average monoculture in >97% of comparisons. It also exceeded that of the best monoculture (transgressive overyielding) in about 60% of sites, with a mean yield ratio of mixture to best‐performing monoculture of 1·07 across all sites. Analyses based on yield of sown species only (excluding weed biomass) demonstrated considerably greater transgressive overyielding (significant at about 70% of sites, ratio of mixture to best‐performing monoculture = 1·18). Mixtures maintained a resistance to weed invasion over at least 3 years. In mixtures, median values indicate <4% of weed biomass in total yield, whereas the median percentage of weeds in monocultures increased from 15% in year 1 to 32% in year 3. Within each year, there was a highly significant relationship (P < 0·0001) between sward evenness and the diversity effect (excess of mixture performance over that predicted from the monoculture performances of component species). At lower evenness values, increases in community evenness resulted in an increased diversity effect, but the diversity effect was not significantly different from the maximum diversity effect across a wide range of higher evenness values. The latter indicates the robustness of the diversity effect to changes in species' relative abundances. Across sites with three complete years of data (24 of the 31 sites), the effect of interactions between the fast‐establishing and temporal persistent trait levels of temporal development was highly significant and comparable in magnitude to effects of interactions between N 2‐fixing and nonfixing trait levels of nitrogen acquisition. Synthesis and applications . The design of grassland mixtures is relevant to farm‐level strategies to achieve sustainable intensification. Experimental evidence indicated significant yield benefits of four species agronomic mixtures which yielded more than the highest‐yielding monoculture at most sites. The results are relevant for agricultural practice and show how grassland mixtures can be designed to improve resource complementarity, increase yields and reduce weed invasion. The yield benefits were robust to considerable changes in the relative proportions of the four species, which is extremely useful for practical management of grassland swards.
Experimental evidence that evolutionarily diverse assemblages result in higher productivity
There now is ample experimental evidence that speciose assemblages are more productive and provide a greater amount of ecosystem services than depauperate ones. However, these experiments often conclude that there is a higher probability of including complementary species combinations in assemblages with more species and lack a priori prediction about which species combinations maximize function. Here, I report the results of an experiment manipulating the evolutionary relatedness of constituent plant species across a richness gradient. I show that assemblages with distantly related species contributed most to the higher biomass production in multispecies assemblages, through species complementarity. Species produced more biomass than predicted from their monocultures when they were in plots with distantly related species and produced the amount of biomass predicted from monoculture when sown with close relatives. This finding suggests that in the absence of any other information, combining distantly related species in restored or managed landscapes may serve to maximize biomass production and carbon sequestration, thus merging calls to conserve evolutionary history and maximize ecosystem function.
A critical assessment of the biodiversity–productivity relationship in forests and implications for conservation
The question of whether biodiversity conservation and carbon conservation can be synergistic hinges on the form of the biodiversity–productivity relationship (BPR), a fundamental ecological pattern. The stakes are particularly high when it comes to forests, which at a global level comprises a large fraction of both biodiversity and carbon. And yet, in forests, the BPR is relatively poorly understood. In this review, we critically evaluate research on forest BPRs, focussing on the experimental and observational studies of the last 2 decades. We find general support for a positive forest BPR, suggesting that biodiversity and carbon conservation are synergistic to a degree. However, we identify several major caveats: (i) although, on average, productivity may increase with biodiversity, the highest-yielding forests are often monocultures of very productive species; (ii) productivity typically saturates at fewer than ten species; (iii) positive BPRs can be driven by some third variable, in particular stem density, instead of a causal arrow from biodiversity to productivity; (iv) the BPR’s sign and magnitude varies across spatial grains and extents, and it may be weak at scales relevant to conservation; and (v) most productivity estimates in forests are associated with large errors. We conclude by explaining the importance of these caveats for both conservation programmes focussed on protection of existing forests and conservation programmes focussed on restoring or replanting forests.
Plant species richness and functional composition drive overyielding in a six-year grassland experiment
Plant diversity has been shown to increase community biomass in experimental communities, but the mechanisms resulting in such positive biodiversity effects have remained largely unknown. We used a large-scale six-year biodiversity experiment near Jena, Germany, to examine how aboveground community biomass in grasslands is affected by different components of plant diversity and thereby infer the mechanisms that may underlie positive biodiversity effects. As components of diversity we defined the number of species (1–16), number of functional groups (1–4), presence of functional groups (legumes, tall herbs, small herbs, and grasses) and proportional abundance of functional groups. Using linear models, replacement series on the level of functional groups, and additive partitioning on the level of species, we explored whether the observed biodiversity effects originated from disproportionate effects of single functional groups or species or from positive interactions between them. Aboveground community biomass was positively related to the number of species measured across functional groups as well as to the number of functional groups measured across different levels of species richness. Furthermore, increasing the number of species within functional groups increased aboveground community biomass, indicating that species within functional groups were not redundant with respect to biomass production. A positive relationship between the number of functional groups and aboveground community biomass within a particular level of species richness suggested that complementarity was larger between species belonging to different rather than to the same functional groups. The presence of legumes or tall herbs had a strong positive impact on aboveground community biomass whereas the presence of small herbs or grasses had on average no significant effect. Two- and three-way interactions between functional group presences were weak, suggesting that their main effects were largely additive. Replacement series analyses on the level of functional groups revealed strong transgressive overyielding and relative yields >1, indicating facilitation. On the species level, we found strong complementarity effects that increased over time while selection effects due to disproportionate contributions of particular species decreased over time. We conclude that transgressive overyielding between functional groups and species richness effects within functional groups caused the positive biodiversity effects on aboveground community biomass in our experiment.
Grass–legume mixtures sustain strong yield advantage over monocultures under cool maritime growing conditions over a period of 5 years
Abstract Background and Aims Grassland-based livestock systems in cool maritime regions are commonly dominated by grass monocultures receiving relatively high levels of fertilizer. The current study investigated whether grass–legume mixtures can improve the productivity, resource efficiency and robustness of yield persistence of cultivated grassland under extreme growing conditions over a period of 5 years. Methods Monocultures and mixtures of two grasses (Phleum pratense and Festuca pratensis) and two legumes (Trifolium pratense and Trifolium repens), one of which was fast establishing and the other temporally persistent, were sown in a field trial. Relative abundance of the four species in the mixtures was systematically varied at sowing. The plots were maintained under three N levels (20, 70 and 220 kg N ha–1 year–1) and harvested twice a year for five consecutive years. Yields of individual species and interactions between all species present were modelled to estimate the species diversity effects. Key Results Significant positive diversity effects in all individual years and averaged across the 5 years were observed. Across years, the four-species equi-proportional mixture was 71 % (N20: 20 kg N ha–1 year–1) and 51 % (N70: 70 kg N ha–1 year–1) more productive than the average of monocultures, and the highest yielding mixture was 36 % (N20) and 39 % (N70) more productive than the highest yielding monoculture. Importantly, diversity effects were also evident at low relative abundances of either species group, grasses or legumes in the mixture. Mixtures suppressed weeds significantly better than monocultures consistently during the course of the experiment at all N levels. Conclusions The results show that even in the less productive agricultural systems in the cool maritime regions grass–legume mixtures can contribute substantially and persistently to a more sustainable agriculture. Positive grass–legume interactions suggest that symbiotic N2 fixation is maintained even under these marginal conditions, provided that adapted species and cultivars are used.
Legume nutrition is improved by neighbouring grasses
AbstractBackgroundCombinations of grasses and nitrogen-fixing legumes are ubiquitous in most natural and derived pastoral grasslands. This was not formerly the case in New Zealand’s unique indigenous grasslands that are now frequently impacted by exotic pasture grasses and legumes. Understanding the co-existence of native and exotic plants is the broad focus of this research.AimsSpillover of nitrogen (N) from clovers to grasses in diverse pasture is well known. We question whether grasses provide reciprocal nutritional benefits to legumes. Does the mutual exploitation of soil biogeochemistry by legumes and grasses help to explain their coexistence and, if so, does this have implications for biodiversity in NZ’s novel native grassland communities?MethodsCombinations of grasses and legumes, including a native tussock grass, were grown in a nutrient-poor (low P, S, Ca, Mg, Mn, and B) high country soil in a pot experiment, quantifying the foliar acquisition of nutrients from soil. Field data were obtained by sampling foliage of clover in single- and mixed-species patches in a more fertile lowland pasture.ResultsBenefits of legume and grass growing together were reflected in enhanced productivity and higher uptake of a range of key nutrients. This was most evident but not restricted to a combination of two exotic species: cocksfoot and white clover. In the nutrient-poor soil, legumes grew better in combination with different species of introduced grasses. Uptake of key elements from soil to plants significantly differed with combinations of legumes and grasses compared to individual species. Elevated concentrations of P, K and S were recorded in clover when growing with grasses, although Ca uptake was lower. Expected reciprocal reduction of clover N or enhanced grass N were not recorded. Mass balance data (total extraction of key nutrients from the soil pool) showed that combination of grasses and legumes exploit soil nutrients (particularly P, Zn, Mn and Mo) more effectively than single species alone. In grasses, only tissue concentrations of K, S and Zn significantly increased when growing with legumes, but native tussock grass procured less nutrients when growing with the exotic legumes. Field sampling of clover from the more fertile lowland soil showed significantly higher foliar concentrations of K, Mn, Cu and B, but less Ca.ConclusionsThe findings are indicative of a mutualistic relationship: legumes derive nutritional benefits from growing with grasses. Native tussock grass contained less N when growing with the exotic legumes, suggesting less compatibility and a lack of adaptation to coexistence.
Root responses to nutrients and soil biota: drivers of species coexistence and ecosystem productivity
1. Although a major part of plant biomass is underground, we know little about the contribution of different species to root biomass in multispecies communities. We summarize studies on root distributions and plant responses to species‐specific soil biota and formulate three hypotheses to explain how root responses may drive species coexistence and ecosystem productivity. 2. Recent studies suggest that root growth of some species may be stimulated in species mixtures compared with monocultures without hampering the growth of other species, leading to below‐ground overyielding. Further studies suggest that these responses are the result of reduced impairment of growth by species‐specific plant pathogens that accumulate in monocultures. 3. First, we hypothesize that due to pathogen‐constrained growth, monocultures are ‘under‐rooted’, i.e. they do not have enough roots for optimal acquisition of nutrients. Although elevated root production in mixtures represents a cost to the plant, improved nutrition will eventually result in improved plant performance. 4. Second, due to the plant species specificity of the soil biotic communities, we suggest that plant species in mixtures develop an intransitive competitive network in which none of the species is competitively superior to all other species. Competitive intransitivity is proposed as a mechanism of species coexistence. 5. As a final hypothesis, we suggest that pathogen‐mediated root overproduction in species mixtures determines the patterns of community productivity and overyielding, both directly, by improving plant performance, and indirectly, by releasing more carbon into the soil, resulting in enhanced availability of nutrients. 6. Synthesis.Recent evidence suggests that species coexistence and ecosystem productivity may be the result of an interplay between pathogen‐driven plant responses and nutritional consequences. We suggest that responses of the roots are an important yet mostly overlooked intermediary between soil biota and plant community responses to biodiversity.