Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Reading Level
      Reading Level
      Clear All
      Reading Level
  • Content Type
      Content Type
      Clear All
      Content Type
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Item Type
    • Is Full-Text Available
    • Subject
    • Publisher
    • Source
    • Donor
    • Language
    • Place of Publication
    • Contributors
    • Location
52,138 result(s) for "transporter"
Sort by:
GLUT3 inhibitor discovery through in silico ligand screening and in vivo validation in eukaryotic expression systems
The passive transport of glucose and related hexoses in human cells is facilitated by members of the glucose transporter family (GLUT, SLC2 gene family). GLUT3 is a high-affinity glucose transporter primarily responsible for glucose entry in neurons. Changes in its expression have been implicated in neurodegenerative diseases and cancer. GLUT3 inhibitors can provide new ways to probe the pathophysiological role of GLUT3 and tackle GLUT3-dependent cancers. Through in silico screening of an ~ 8 million compounds library against the inward- and outward-facing models of GLUT3, we selected ~ 200 ligand candidates. These were tested for in vivo inhibition of GLUT3 expressed in hexose transporter-deficient yeast cells, resulting in six new GLUT3 inhibitors. Examining their specificity for GLUT1-5 revealed that the most potent GLUT3 inhibitor (G3iA, IC 50  ~ 7 µM) was most selective for GLUT3, inhibiting less strongly only GLUT2 (IC 50  ~ 29 µM). None of the GLUT3 inhibitors affected GLUT5, three inhibited GLUT1 with equal or twofold lower potency, and four showed comparable or two- to fivefold better inhibition of GLUT4. G3iD was a pan-Class 1 GLUT inhibitor with the highest preference for GLUT4 (IC 50  ~ 3.9 µM). Given the prevalence of GLUT1 and GLUT3 overexpression in many cancers and multiple myeloma’s reliance on GLUT4, these GLUT3 inhibitors may discriminately hinder glucose entry into various cancer cells, promising novel therapeutic avenues in oncology.
The SGLT2 inhibitor dapagliflozin in heart failure with preserved ejection fraction: a multicenter randomized trial
Patients with heart failure and preserved ejection fraction (HFpEF) have a high burden of symptoms and functional limitations, and have a poor quality of life. By targeting cardiometabolic abmormalities, sodium glucose cotransporter 2 (SGLT2) inhibitors may improve these impairments. In this multicenter, randomized trial of patients with HFpEF (NCT03030235), we evaluated whether the SGLT2 inhibitor dapagliflozin improves the primary endpoint of Kansas City Cardiomyopathy Questionnaire Clinical Summary Score (KCCQ-CS), a measure of heart failure-related health status, at 12 weeks after treatment initiation. Secondary endpoints included the 6-minute walk test (6MWT), KCCQ Overall Summary Score (KCCQ-OS), clinically meaningful changes in KCCQ-CS and -OS, and changes in weight, natriuretic peptides, glycated hemoglobin and systolic blood pressure. In total, 324 patients were randomized to dapagliflozin or placebo. Dapagliflozin improved KCCQ-CS (effect size, 5.8 points (95% confidence interval (CI) 2.3–9.2, P  = 0.001), meeting the predefined primary endpoint, due to improvements in both KCCQ total symptom score (KCCQ-TS) (5.8 points (95% CI 2.0–9.6, P  = 0.003)) and physical limitations scores (5.3 points (95% CI 0.7–10.0, P  = 0.026)). Dapagliflozin also improved 6MWT (mean effect size of 20.1 m (95% CI 5.6–34.7, P  = 0.007)), KCCQ-OS (4.5 points (95% CI 1.1–7.8, P  = 0.009)), proportion of participants with 5-point or greater improvements in KCCQ-OS (odds ratio (OR) = 1.73 (95% CI 1.05–2.85, P  = 0.03)) and reduced weight (mean effect size, 0.72 kg (95% CI 0.01–1.42, P  = 0.046)). There were no significant differences in other secondary endpoints. Adverse events were similar between dapagliflozin and placebo (44 (27.2%) versus 38 (23.5%) patients, respectively). These results indicate that 12 weeks of dapagliflozin treatment significantly improved patient-reported symptoms, physical limitations and exercise function and was well tolerated in chronic HFpEF. In a multicenter, randomized trial, the SGLT2 inhibitor dapagliflozin improved the health status and exercise function of patients with heart failure with preserved ejection fraction (HFpEF), a condition for which effective treatments are lacking.
Dapagliflozin in Heart Failure with Mildly Reduced or Preserved Ejection Fraction
Sodium-glucose cotransporter 2 (SGLT2) inhibitors reduce the risk of hospitalization for heart failure and cardiovascular death among patients with chronic heart failure and a left ventricular ejection fraction of 40% or less. Whether SGLT2 inhibitors are effective in patients with a higher left ventricular ejection fraction remains less certain. We randomly assigned 6263 patients with heart failure and a left ventricular ejection fraction of more than 40% to receive dapagliflozin (at a dose of 10 mg once daily) or matching placebo, in addition to usual therapy. The primary outcome was a composite of worsening heart failure (which was defined as either an unplanned hospitalization for heart failure or an urgent visit for heart failure) or cardiovascular death, as assessed in a time-to-event analysis. Over a median of 2.3 years, the primary outcome occurred in 512 of 3131 patients (16.4%) in the dapagliflozin group and in 610 of 3132 patients (19.5%) in the placebo group (hazard ratio, 0.82; 95% confidence interval [CI], 0.73 to 0.92; P<0.001). Worsening heart failure occurred in 368 patients (11.8%) in the dapagliflozin group and in 455 patients (14.5%) in the placebo group (hazard ratio, 0.79; 95% CI, 0.69 to 0.91); cardiovascular death occurred in 231 patients (7.4%) and 261 patients (8.3%), respectively (hazard ratio, 0.88; 95% CI, 0.74 to 1.05). Total events and symptom burden were lower in the dapagliflozin group than in the placebo group. Results were similar among patients with a left ventricular ejection fraction of 60% or more and those with a left ventricular ejection fraction of less than 60%, and results were similar in prespecified subgroups, including patients with or without diabetes. The incidence of adverse events was similar in the two groups. Dapagliflozin reduced the combined risk of worsening heart failure or cardiovascular death among patients with heart failure and a mildly reduced or preserved ejection fraction. (Funded by AstraZeneca; DELIVER ClinicalTrials.gov number, NCT03619213.).
Sotagliflozin in Patients with Diabetes and Recent Worsening Heart Failure
Patients with diabetes and recent worsening heart failure that had led to hospitalization were randomly assigned to receive sotagliflozin or placebo. At a median of 9 months, the total number of deaths from cardiovascular causes and hospitalizations and urgent visits for heart failure was significantly lower with sotagliflozin than with placebo.
Sotagliflozin in Patients with Diabetes and Chronic Kidney Disease
In a trial involving 10,584 patients with diabetes and chronic kidney disease, sotagliflozin resulted in fewer total deaths from cardiovascular causes, hospitalizations for heart failure, and urgent visits for heart failure than placebo. Diarrhea, mycotic infections, and diabetic ketoacidosis occurred with sotagliflozin.
Physiology of renal glucose handling via SGLT1, SGLT2 and GLUT2
The concentration of glucose in plasma is held within narrow limits (4–10 mmol/l), primarily to ensure fuel supply to the brain. Kidneys play a role in glucose homeostasis in the body by ensuring that glucose is not lost in the urine. Three membrane proteins are responsible for glucose reabsorption from the glomerular filtrate in the proximal tubule: sodium−glucose cotransporters SGLT1 and SGLT2, in the apical membrane, and GLUT2, a uniporter in the basolateral membrane. ‘Knockout’ of these transporters in mice and men results in the excretion of filtered glucose in the urine. In humans, intravenous injection of the plant glucoside phlorizin also results in excretion of the full filtered glucose load. This outcome and the finding that, in an animal model, phlorizin reversed the symptoms of diabetes, has stimulated the development and successful introduction of SGLT2 inhibitors, gliflozins, in the treatment of type 2 diabetes mellitus. Here we summarise the current state of our knowledge about the physiology of renal glucose handling and provide background to the development of SGLT2 inhibitors for type 2 diabetes treatment.
Sotagliflozin, the first dual SGLT inhibitor: current outlook and perspectives
Sotagliflozin is a dual sodium–glucose co-transporter-2 and 1 (SGLT2/1) inhibitor for the treatment of both type 1 (T1D) and type 2 diabetes (T2D). Sotagliflozin inhibits renal sodium–glucose co-transporter 2 (determining significant excretion of glucose in the urine, in the same way as other, already available SGLT-2 selective inhibitors) and intestinal SGLT-1, delaying glucose absorption and therefore reducing post prandial glucose. Well-designed clinical trials, have shown that sotagliflozin (as monotherapy or add-on therapy to other anti-hyperglycemic agents) improves glycated hemoglobin in adults with T2D, with beneficial effects on bodyweight and blood pressure. Similar results have been obtained in adults with T1D treated with either continuous subcutaneous insulin infusion or multiple daily insulin injections, even after insulin optimization. A still ongoing phase 3 study is currently evaluating the effect of sotagliflozin on cardiovascular outcomes (ClinicalTrials.gov NCT03315143). In this review we illustrate the advantages and disadvantages of dual SGLT 2/1 inhibition, in order to better characterize and investigate its mechanisms of action and potentialities.
Dapagliflozin in Patients with Chronic Kidney Disease
In this trial, patients with CKD (with or without type 2 diabetes) were randomly assigned to receive dapagliflozin or placebo. The primary composite outcome — a sustained decline in the estimated GFR of at least 50%, end-stage kidney disease, or death from renal or cardiovascular causes — was less frequent with dapagliflozin.
SGLT-2-inhibition with dapagliflozin reduces tissue sodium content: a randomised controlled trial
Background and aims Sodium tissue content by 23 Na magnetic resonance imaging (Na-MRI) has been validated in experimental and human studies. SGLT-2 inhibition blocks the reabsorption of glucose and of sodium in the proximal tubular cells in a 1:1 fashion. We hypothesized that SGLT-2 inhibition in patients with type 2 diabetes characterized by sodium retention leads to decreased tissue sodium content due to its pharmacological action. Materials and methods In a prospective double blind, placebo controlled, cross-over trial 59 patients (61 ± 7.6 years) with type 2 diabetes were randomized to either dapagliflozin 10 mg or placebo once daily for 6 weeks each. In addition to metabolic parameters and ambulatory blood pressure (BP) we analysed the sodium content in the skin and muscles of the lower leg by Na-MRI. Results Compared to baseline 6 weeks treatment with the SGLT-2 inhibitor dapagliflozin decreased fasting (132 ± 28 vs. 114 ± 19 mg/dl, p < 0.001), postprandial blood glucose (178 ± 66 mg/dl vs. 153 ± 46 mg/dl, p < 0.001), body weight (87.6 vs. 86.6 kg, p < 0.001) and systolic (129 ± 12 vs. 126 ± 11 mmHg, p = 0.010), and diastolic (77.4 ± 9 vs. 75.6 ± 8 mmHg, p = 0.024), 24-h ambulatory BP. Tissue sodium content in the skin was reduced after 6 weeks treatment with dapagliflozin compared to baseline [24.1 ± 6.6 vs. 22.7 ± 6.4 A.U.(arbitrary unit) p = 0.013]. No significant reduction of tissue sodium content was observed in the muscle (M. triceps surae: 20.5 ± 3.5 vs. 20.4 ± 3.7 A.U. p = 0.801). No clear significant difference in tissue water content of muscle and skin was observed after 6 weeks of treatment with dapagliflozin, compared to baseline. Conclusion SGLT-2 inhibition with dapagliflozin resulted in a significant decrease in tissue sodium content of the skin after 6 weeks. This observation point to a decrease of total sodium content in patients with type 2 diabetes prone to cardiovascular complications, that might be mitigated by SGLT-2 inhibition. Trial registration The study was registered at http://www.clinicaltrials.gov (NCT02383238) retrospectively registered