Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
1 result(s) for "type I pro‐photosensitizers"
Sort by:
Totally Caged Type I Pro‐Photosensitizer for Oxygen‐Independent Synergistic Phototherapy of Hypoxic Tumors
Activatable type I photosensitizers are an effective way to overcome the insufficiency and imprecision of photodynamic therapy in the treatment of hypoxic tumors, however, the incompletely inhibited photoactivity of pro‐photosensitizer and the limited oxidative phototoxicity of post‐photosensitizer are major limitations. It is still a great challenge to address these issues using a single and facile design. Herein, a series of totally caged type I pro‐photosensitizers (Pro‐I‐PSs) are rationally developed that are only activated in tumor hypoxic environment and combine two oxygen‐independent therapeutic mechanisms under single‐pulse laser irradiation to enhance the phototherapeutic efficacy. Specifically, five benzophenothiazine‐based dyes modified with different nitroaromatic groups, BPN 1−5, are designed and explored as latent hypoxia‐activatable Pro‐I‐PSs. By comparing their optical responses to nitroreductase (NTR), it is identified that the 2‐methoxy‐4‐nitrophenyl decorated dye (BPN 2) is the optimal Pro‐I‐PSs, which can achieve NTR‐activated background‐free fluorescence/photoacoustic dual‐modality tumor imaging. Furthermore, upon activation, BPN 2 can simultaneously produce an oxygen‐independent photoacoustic cavitation effect and a photodynamic type I process at single‐pulse laser irradiation. Detailed studies in vitro and in vivo indicated that BPN 2 can effectively induce cancer cell apoptosis through synergistic effects. This study provides promising potential for overcoming the pitfalls of hypoxic‐tumor photodynamic therapy. Enhancement of the accuracy and efficiency of activatable type I pro‐photosensitizers (Pro‐I‐PSs) in a simple and effective way remains greatly challenging. Given this, the Pro‐I‐PS BPN 2 is developed with the following features: 1) Simple and well‐defined molecular structure; 2) NTR‐triggered dramatic transition of photoactivity from completely inhibited state to highly activated state; 3) high‐contrast fluorescence/photoacoustic imaging‐guided oxygen‐independent synergistic phototherapy.