Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
LanguageLanguage
-
SubjectSubject
-
Item TypeItem Type
-
DisciplineDiscipline
-
YearFrom:-To:
-
More FiltersMore FiltersIs Peer Reviewed
Done
Filters
Reset
302
result(s) for
"ubiquitylation"
Sort by:
The RNA-Binding Ubiquitin Ligase MEX3A Affects Glioblastoma Tumorigenesis by Inducing Ubiquitylation and Degradation of RIG-I
2020
Glioblastoma multiforme (GB) is the most malignant primary brain tumor in humans, with an overall survival of approximatively 15 months. The molecular heterogeneity of GB, as well as its rapid progression, invasiveness and the occurrence of drug-resistant cancer stem cells, limits the efficacy of the current treatments. In order to develop an innovative therapeutic strategy, it is mandatory to identify and characterize new molecular players responsible for the GB malignant phenotype. In this study, the RNA-binding ubiquitin ligase MEX3A was selected from a gene expression analysis performed on publicly available datasets, to assess its biological and still-unknown activity in GB tumorigenesis. We find that MEX3A is strongly up-regulated in GB specimens, and this correlates with very low protein levels of RIG-I, a tumor suppressor involved in differentiation, apoptosis and innate immune response. We demonstrate that MEX3A binds RIG-I and induces its ubiquitylation and proteasome-dependent degradation. Further, the genetic depletion of MEX3A leads to an increase of RIG-I protein levels and results in the suppression of GB cell growth. Our findings unveil a novel molecular mechanism involved in GB tumorigenesis and suggest MEX3A and RIG-I as promising therapeutic targets in GB.
Journal Article
TGF-β Signaling
by
Tzavlaki, Kalliopi
,
Moustakas, Aristidis
in
Animals
,
Cell Membrane - metabolism
,
Chemical bonds
2020
Transforming growth factor-β (TGF-β) represents an evolutionarily conserved family of secreted polypeptide factors that regulate many aspects of physiological embryogenesis and adult tissue homeostasis. The TGF-β family members are also involved in pathophysiological mechanisms that underlie many diseases. Although the family comprises many factors, which exhibit cell type-specific and developmental stage-dependent biological actions, they all signal via conserved signaling pathways. The signaling mechanisms of the TGF-β family are controlled at the extracellular level, where ligand secretion, deposition to the extracellular matrix and activation prior to signaling play important roles. At the plasma membrane level, TGF-βs associate with receptor kinases that mediate phosphorylation-dependent signaling to downstream mediators, mainly the SMAD proteins, and mediate oligomerization-dependent signaling to ubiquitin ligases and intracellular protein kinases. The interplay between SMADs and other signaling proteins mediate regulatory signals that control expression of target genes, RNA processing at multiple levels, mRNA translation and nuclear or cytoplasmic protein regulation. This article emphasizes signaling mechanisms and the importance of biochemical control in executing biological functions by the prototype member of the family, TGF-β.
Journal Article
Foxp3 Post-translational Modifications and Treg Suppressive Activity
2019
Regulatory T cells (Tregs) are engaged in maintaining immune homeostasis and preventing autoimmunity. Treg cells include thymic Treg cells and peripheral Treg cells, both of which can suppress the immune response via multiple distinct mechanisms. The differentiation, proliferation, suppressive function and survival of Treg cells are affected by distinct energy metabolic programs. Tissue-resident Treg cells hold unique features in comparison with the lymphoid organ Treg cells. Foxp3 transcription factor is a lineage master regulator for Treg cell development and suppressive activity. Accumulating evidence indicates that the activity of Foxp3 protein is modulated by various post-translational modifications (PTMs), including phosphorylation, O-GlcNAcylation, acetylation, ubiquitylation and methylation. These modifications affect multiple aspects of Foxp3 function. In this review, we define features of Treg cells and roles of Foxp3 in Treg biology, and summarize current research in PTMs of Foxp3 protein involved in modulating Treg function. This review also attempts to define Foxp3 dimer modifications relevant to mediating Foxp3 activity and Treg suppression. Understanding Foxp3 protein features and modulation mechanisms may help in the design of rational therapies for immune diseases and cancer.
Journal Article
Crosstalk Between Mammalian Autophagy and the Ubiquitin-Proteasome System
2018
Autophagy and the ubiquitin-proteasome system (UPS) are the two major intracellular quality control and recycling mechanisms that are responsible for cellular homeostasis in eukaryotes. Ubiquitylation is utilized as a degradation signal by both systems, yet, different mechanisms are in play. The UPS is responsible for the degradation of short-lived proteins and soluble misfolded proteins whereas autophagy eliminates long-lived proteins, insoluble protein aggregates and even whole organelles (e.g., mitochondria, peroxisomes) and intracellular parasites (e.g., bacteria). Both the UPS and selective autophagy recognize their targets through their ubiquitin tags. In addition to an indirect connection between the two systems through ubiquitylated proteins, recent data indicate the presence of connections and reciprocal regulation mechanisms between these degradation pathways. In this review, we summarize these direct and indirect interactions and crosstalks between autophagy and the UPS, and their implications for cellular stress responses and homeostasis.
Journal Article
Biological roles of LSD1 beyond its demethylase activity
2020
It is well-established that Lysine-specific demethylase 1 (LSD1, also known as KDM1A) roles as a lysine demethylase canonically acting on H3K4me1/2 and H3K9me1/2 for regulating gene expression. Though the discovery of non-histone substrates methylated by LSD1 has largely expanded the functions of LSD1 as a typical demethylase, recent groundbreaking studies unveiled its non-catalytic functions as a second life for this demethylase. We and others found that LSD1 is implicated in the interaction with a line of proteins to exhibit additional non-canonical functions in a demethylase-independent manner. Here, we present an integrated overview of these recent literatures charging LSD1 with unforeseen functions to re-evaluate and summarize its non-catalytic biological roles beyond the current understanding of its demethylase activity. Given LSD1 is reported to be ubiquitously overexpressed in a variety of tumors, it has been generally considered as an innovative target for cancer therapy. We anticipate that these non-canonical functions of LSD1 will arouse the consideration that extending the LSD1-based drug discovery to targeting LSD1 protein interactions non-catalytically, not only its demethylase activity, may be a novel strategy for cancer prevention.
Journal Article
CPT1A‐mediated succinylation of S100A10 increases human gastric cancer invasion
by
Li, Mengjing
,
Shi, Hui
,
Mu, Xianmin
in
Animals
,
Annexin A2 - genetics
,
Annexin A2 - metabolism
2019
Gastric cancer (GC) is a malignancy of the lining of the stomach and is prone to distant metastasis, which involves a variety of complex molecules. The S100 proteins are a family of calcium‐binding cytosolic proteins that possess a wide range of intracellular and extracellular functions and play pivotal roles in the invasion and migration of tumour cells. Among these, S100A10 is known to be overexpressed in GC. Lysine succinylation, a recently identified form of protein post‐translational modification, is an important regulator of cellular processes. Here, we demonstrated that S100A10 was succinylated at lysine residue 47 (K47), and levels of succinylated S100A10 were increased in human GC. Moreover, K47 succinylation of S100A10 was stabilized by suppression of ubiquitylation and subsequent proteasomal degradation. Furthermore, carnitine palmitoyltransferase 1A (CPT1A) was found to function as a lysine succinyltransferase that interacts with S100A10. Succinylation of S100A10 is regulated by CPT1A, while desuccinylation is regulated by SIRT5. Overexpression of a succinylation mimetic mutant, K47E S100A10, increased cell invasion and migration. Taken together, this study reveals a novel mechanism of S100A10 accumulation mediated by succinylation in GC, which promotes GC progression and is regulated by the succinyltransferase CPT1A and SIRT5‐mediated desuccinylation.
Journal Article
Histone H1 Post-Translational Modifications: Update and Future Perspectives
by
Suau, Pedro
,
García-Gomis, Daniel
,
Ponte, Inma
in
Animals
,
Chromatin Assembly and Disassembly
,
Chromatography
2020
Histone H1 is the most variable histone and its role at the epigenetic level is less characterized than that of core histones. In vertebrates, H1 is a multigene family, which can encode up to 11 subtypes. The H1 subtype composition is different among cell types during the cell cycle and differentiation. Mass spectrometry-based proteomics has added a new layer of complexity with the identification of a large number of post-translational modifications (PTMs) in H1. In this review, we summarize histone H1 PTMs from lower eukaryotes to humans, with a particular focus on mammalian PTMs. Special emphasis is made on PTMs, whose molecular function has been described. Post-translational modifications in H1 have been associated with the regulation of chromatin structure during the cell cycle as well as transcriptional activation, DNA damage response, and cellular differentiation. Additionally, PTMs in histone H1 that have been linked to diseases such as cancer, autoimmune disorders, and viral infection are examined. Future perspectives and challenges in the profiling of histone H1 PTMs are also discussed.
Journal Article
Nrf2 is controlled by two distinct β-TrCP recognition motifs in its Neh6 domain, one of which can be modulated by GSK-3 activity
by
Cuadrado, A
,
Chowdhry, S
,
Sutherland, C
in
Animals
,
Antineoplastic Agents - pharmacology
,
Apoptosis
2013
Identification of regulatable mechanisms by which transcription factor NF-E2 p45-related factor 2 (Nrf2) is repressed will allow strategies to be designed that counter drug resistance associated with its upregulation in tumours that harbour somatic mutations in
Kelch-like ECH-associated protein-1 (Keap1)
, a gene that encodes a joint adaptor and substrate receptor for the Cul3–Rbx1/Roc1 ubiquitin ligase. We now show that mouse Nrf2 contains two binding sites for β-transducin repeat-containing protein (β-TrCP), which acts as a substrate receptor for the Skp1–Cul1–Rbx1/Roc1 ubiquitin ligase complex. Deletion of either binding site in Nrf2 decreased β-TrCP-mediated ubiquitylation of the transcription factor. The ability of one of the two β-TrCP-binding sites to serve as a degron could be both increased and decreased by manipulation of glycogen synthase kinase-3 (GSK-3) activity. Biotinylated-peptide pull-down assays identified DSGIS
338
and DSAPGS
378
as the two β-TrCP-binding motifs in Nrf2. Significantly, our pull-down assays indicated that β-TrCP binds a phosphorylated version of DSGIS more tightly than its non-phosphorylated counterpart, whereas this was not the case for DSAPGS. These data suggest that DSGIS, but not DSAPGS, contains a functional GSK-3 phosphorylation site. Activation of GSK-3 in Keap1-null mouse embryonic fibroblasts (MEFs), or in human lung A549 cells that contain mutant
Keap1
, by inhibition of the phosphoinositide 3-kinase (PI3K)–protein kinase B (PKB)/Akt pathway markedly reduced endogenous Nrf2 protein and decreased to 10–50% of normal the levels of mRNA for prototypic Nrf2-regulated enzymes, including the glutamate-cysteine ligase catalytic and modifier subunits, glutathione
S-
transferases Alpha-1 and Mu-1, haem oxygenase-1 and NAD(P)H:quinone oxidoreductase-1. Pre-treatment of
Keap1
−/−
MEFs or A549 cells with the LY294002 PI3K inhibitor or the MK-2206 PKB/Akt inhibitor increased their sensitivity to acrolein, chlorambucil and cisplatin between 1.9-fold and 3.1-fold, and this was substantially attenuated by simultaneous pre-treatment with the GSK-3 inhibitor CT99021.
Journal Article
Building and remodelling Cullin-RING E3 ubiquitin ligases
by
Lydeard, John R
,
Harper, J Wade
,
Schulman, Brenda A
in
Gene expression
,
Molecular biology
,
Protein folding
2013
Cullin-RING E3 ubiquitin ligases (CRL) control a plethora of biological pathways through targeted ubiquitylation of signalling proteins. These modular assemblies use substrate receptor modules to recruit specific targets. Recent efforts have focused on understanding the mechanisms that control the activity state of CRLs through dynamic alterations in CRL architecture. Central to these processes are cycles of cullin neddylation and deneddylation, as well as exchange of substrate receptor modules to re-sculpt the CRL landscape, thereby responding to the cellular requirements to turn over distinct proteins in different contexts. This review is focused on how CRLs are dynamically controlled with an emphasis on how cullin neddylation cycles are integrated with receptor exchange.
Journal Article