Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Series TitleSeries Title
-
Reading LevelReading Level
-
YearFrom:-To:
-
More FiltersMore FiltersContent TypeItem TypeIs Full-Text AvailableSubjectCountry Of PublicationPublisherSourceTarget AudienceDonorLanguagePlace of PublicationContributorsLocation
Done
Filters
Reset
88,882
result(s) for
"ultraviolet radiation"
Sort by:
Inflammatory Molecules Associated with Ultraviolet Radiation-Mediated Skin Aging
by
Kamiya, Koji
,
Ansary, Tuba M.
,
Ohtsuki, Mamitaro
in
Aging
,
Antioxidants - therapeutic use
,
Cell cycle
2021
Skin is the largest and most complex organ in the human body comprised of multiple layers with different types of cells. Different kinds of environmental stressors, for example, ultraviolet radiation (UVR), temperature, air pollutants, smoking, and diet, accelerate skin aging by stimulating inflammatory molecules. Skin aging caused by UVR is characterized by loss of elasticity, fine lines, wrinkles, reduced epidermal and dermal components, increased epidermal permeability, delayed wound healing, and approximately 90% of skin aging. These external factors can cause aging through reactive oxygen species (ROS)-mediated inflammation, as well as aged skin is a source of circulatory inflammatory molecules which accelerate skin aging and cause aging-related diseases. This review article focuses on the inflammatory pathways associated with UVR-mediated skin aging.
Journal Article
High-harmonic generation in amorphous solids
by
Chini, Michael
,
Ghimire, Shambhu
,
Yin, Yanchun
in
639/766/119/995
,
639/766/400/3923
,
Attosecond pulses
2017
High-harmonic generation in isolated atoms and molecules has been widely utilized in extreme ultraviolet photonics and attosecond pulse metrology. Recently, high-harmonic generation has been observed in solids, which could lead to important applications such as all-optical methods to image valance charge density and reconstruct electronic band structures, as well as compact extreme ultraviolet light sources. So far these studies are confined to crystalline solids; therefore, decoupling the respective roles of long-range periodicity and high density has been challenging. Here we report the observation of high-harmonic generation from amorphous fused silica. We decouple the role of long-range periodicity by comparing harmonics generated from fused silica and crystalline quartz, which contain the same atomic constituents but differ in long-range periodicity. Our results advance current understanding of the strong-field processes leading to high-harmonic generation in solids with implications for the development of robust and compact extreme ultraviolet light sources.
Although higher harmonic generation from solids has become of interest in many fields, its observation is typically limited to crystalline solids. Here, the authors demonstrate that higher harmonics can be generated from amorphous solids.
Journal Article
Molecular composition and photochemical lifetimes of brown carbon chromophores in biomass burning organic aerosol
by
Fleming, Lauren T.
,
Roberts, James M.
,
Yokelson, Robert
in
Absorption
,
Absorption coefficient
,
Absorption spectra
2020
To better understand the effects of wildfires on air quality and climate, it is important to assess the occurrence of chromophoric compounds in smoke and characterize their optical properties. This study explores the molecular composition of light-absorbing organic aerosol, or brown carbon (BrC), sampled at the Missoula Fire Sciences laboratory as a part of the FIREX Fall 2016 lab intensive. A total of 12 biomass fuels from different plant types were tested, including gymnosperm (coniferous) and angiosperm (flowering) plants and different ecosystem components such as duff, litter, and canopy. Emitted biomass burning organic aerosol (BBOA) particles were collected onto Teflon filters and analyzed offline using high-performance liquid chromatography coupled to a photodiode array spectrophotometer and a high-resolution mass spectrometer (HPLC–PDA–HRMS). Separated BrC chromophores were classified by their retention times, absorption spectra, integrated absorbance in the near-UV and visible spectral range (300–700 nm), and chemical formulas from the accurate m∕z measurements. BrC chromophores were grouped into the following classes and subclasses: lignin-derived products, which include lignin pyrolysis products; distillation products, which include coumarins and flavonoids; nitroaromatics; and polycyclic aromatic hydrocarbons (PAHs). The observed classes and subclasses were common across most fuel types, although specific BrC chromophores varied based on plant type (gymnosperm or angiosperm) and ecosystem component(s) burned. To study the stability of the observed BrC compounds with respect to photodegradation, BBOA particle samples were irradiated directly on filters with near UV (300–400 nm) radiation, followed by extraction and HPLC–PDA–HRMS analysis. Lifetimes of individual BrC chromophores depended on the fuel type and the corresponding combustion condition. Lignin-derived and flavonoid classes of BrC generally had the longest lifetimes with respect to UV photodegradation. Moreover, lifetimes for the same type of BrC chromophores varied depending on biomass fuel and combustion conditions. While individual BrC chromophores disappeared on a timescale of several days, the overall light absorption by the sample persisted longer, presumably because the condensed-phase photochemical processes converted one set of chromophores into another without complete photobleaching or from undetected BrC chromophores that photobleached more slowly. To model the effect of BrC on climate, it is important to understand the change in the overall absorption coefficient with time. We measured the equivalent atmospheric lifetimes of the overall BrC absorption coefficient, which ranged from 10 to 41 d, with subalpine fir having the shortest lifetime and conifer canopies, i.e., juniper, having the longest lifetime. BrC emitted from biomass fuel loads encompassing multiple ecosystem components (litter, shrub, canopy) had absorption lifetimes on the lower end of the range. These results indicate that photobleaching of BBOA by condensed-phase photochemistry is relatively slow. Competing chemical aging mechanisms, such as heterogeneous oxidation by OH, may be more important for controlling the rate of BrC photobleaching in BBOA.
Journal Article
Exploring the observational constraints on the simulation of brown carbon
by
Jimenez, Jose L.
,
Heald, Colette L.
,
Perring, Anne E.
in
Absorption
,
Absorption coefficient
,
Absorptivity
2018
Organic aerosols (OA) that strongly absorb solar radiation in the near-UV are referred to as brown carbon (BrC). The sources, evolution, and optical properties of BrC remain highly uncertain and contribute significantly to uncertainty in the estimate of the global direct radiative effect (DRE) of aerosols. Previous modeling studies of BrC optical properties and DRE have been unable to fully evaluate model performance due to the lack of direct measurements of BrC absorption. In this study, we develop a global model simulation (GEOS-Chem) of BrC and test it against BrC absorption measurements from two aircraft campaigns in the continental US (SEAC4RS and DC3). To the best of our knowledge, this is the first study to compare simulated BrC absorption with direct aircraft measurements. We show that BrC absorption properties estimated based on previous laboratory measurements agree with the aircraft measurements of freshly emitted BrC absorption but overestimate aged BrC absorption. In addition, applying a photochemical scheme to simulate bleaching/degradation of BrC improves model skill. The airborne observations are therefore consistent with a mass absorption coefficient (MAC) of freshly emitted biomass burning OA of 1.33 m2 g−1 at 365 nm coupled with a 1-day whitening e-folding time. Using the GEOS-Chem chemical transport model integrated with the RRTMG radiative transfer model, we estimate that the top-of-the-atmosphere all-sky direct radiative effect (DRE) of OA is −0.344 Wm−2, 10 % higher than that without consideration of BrC absorption. Therefore, our best estimate of the absorption DRE of BrC is +0.048 Wm−2. We suggest that the DRE of BrC has been overestimated previously due to the lack of observational constraints from direct measurements and omission of the effects of photochemical whitening.
Journal Article
Lorentz Meets Fano in Spectral Line Shapes: A Universal Phase and Its Laser Control
2013
Symmetric Lorentzian and asymmetric Fano line shapes are fundamental spectroscopic signatures that quantify the structural and dynamical properties of nuclei, atoms, molecules, and solids. This study introduces a universal temporal-phase formalism, mapping the Fano asymmetry parameter q to a phase φ of the time-dependent dipole response function. The formalism is confirmed experimentally by laser-transforming Fano absorption lines of autoionizing helium into Lorentzian lines after attosecond-pulsed excitation. We also demonstrate the inverse, the transformation of a naturally Lorentzian line into a Fano profile. A further application of this formalism uses quantum-phase control to amplify extreme-ultraviolet light resonantly interacting with He atoms. The quantum phase of excited states and its response to interactions can thus be extracted from line-shape analysis, with applications in many branches of spectroscopy.
Journal Article
Capturing occupational risk of airborne disease: An international job-exposure matrix based on five exposure factors
2025
OBJECTIVE: This study aimed to construct a job-exposure matrix (JEM) for the risk of being infected by infectious agents through airborne or droplet transmission in an occupational setting, which might lead to a respiratory disease. METHODS: An established COVID-19-JEM formed the basis for the development of the general airborne infectious agents JEM. Nine researchers in occupational epidemiology from three European countries (Denmark, The Netherlands and the United Kingdom) discussed and agreed on which factors from the COVID-19-JEM were relevant and whether new factors or adjustments of risk levels were needed. Adjustments to the COVID-19 JEM were made in a structured iterative. based on an expert assessment, a JEM on solar ultraviolet radiation (UVR) exposure including information on hours per day working inside, and national data on hours per week on site. Finally, a risk score was assigned to all factors for each job title within the International Standard Classification of Occupations system 2008 (ISCO-08). RESULTS: This airborne infectious agents JEM contains five factors: (i) hours spent per week on site, (ii) hours spent per day working inside, (iii) number and (iv) nature of contacts, and (v) being in close physical contact to others. Per occupation, a risk score ranging from 1 (low risk) to 3 (high risk) was provided for all five factors separately. CONCLUSION: This newly developed infectious agents JEM assesses the risk at population level using five factors. Following validation, this JEM could serve as a valuable tool in future studies investigating the role of work in the occurrence of a respiratory disease.
Journal Article
Exploring the Long-Term Relationship Between Thermospheric ∑O/N2 and Solar EUV Flux
by
Xiao, Luo
,
Yu, Yang
,
Li, Hao
in
column O/N2 ratio
,
Correlation analysis
,
Extreme ultraviolet radiation
2025
Column O/N2 ratio (∑O/N2), a physical quantity representing thermospheric disturbances, is influenced by solar extreme ultraviolet radiation flux (QEUV) changes. Investigating the correlation between these two factors is essential for understanding the evolution of the thermosphere. This study examines the correlation and periodic variations of ∑O/N2 and QEUV across different phases of solar activity, using data from the Global Ultraviolet Imager (GUVI) spanning from 2002 to 2022. A correlation analysis reveals a positive relationship between ∑O/N2 and QEUV. The function fitting results show that the magnitude of changes in ∑O/N2 due to QEUV variations is approximately 30% of the mean ∑O/N2. A wavelet analysis reveals their coherence in periodic components of 27-day, annual, and 11-year periods. These results are significant for studying the Sun–Earth coupling mechanism and understanding the impact of space weather on the thermosphere.
Journal Article
Darker ants dominate the canopy : testing macroecological hypotheses for patterns in colour along a microclimatic gradient
by
Bishop, Tom R.
,
Parr, Catherine
,
Law, Stephanie J.
in
Air temperature
,
Animal behavior
,
animal ecology
2020
Gradients in cuticle lightness of ectotherms have been demonstrated across latitudes and elevations. Three key hypotheses have been used to explain these macroecological patterns: the thermal melanism hypothesis (TMH), the melanism‐desiccation hypothesis (MDH) and the photo‐protection hypothesis (PPH). Yet the broad abiotic measures, such as temperature, humidity and UV‐B radiation, typically used to detect these ecogeographical patterns, are a poor indication of the microenvironment experienced by small, cursorial ectotherms like ants. We tested whether these macroecological hypotheses explaining cuticle lightness held at habitat and microclimatic level by using a vertical gradient within a tropical rainforest. We sampled 222 ant species in lowland, tropical rainforest across four vertical strata: subterranean, ground, understory and canopy. We recorded cuticle lightness, abundance and estimated body size for each species and calculated an assemblage‐weighted mean for cuticle lightness and body size for each vertical stratum. Abiotic variables (air temperature, vapour pressure deficit and UV‐B radiation) were recorded for each vertical stratum. We found that cuticle lightness of ant assemblages was vertically stratified: ant assemblages in the canopy and understory were twice as dark as assemblages in ground and subterranean strata. Cuticle lightness was not correlated with body size, and there was no support for the TMH. Rather, we attribute this cline in cuticle lightness to a combination of the MDH and the PPH. Our findings indicate that broad macroecological patterns can be detected at much smaller spatial scales and that microclimatic gradients can shape trait variation, specifically the cuticle lightness of ants. These results suggest that any changes to microclimate that occur due to land‐use change or climate warming could drive selection of ants based on cuticle colour, altering assemblage structure and potentially ecosystem functioning.
Journal Article
Extreme-ultraviolet refractive optics
2018
Refraction is a well-known optical phenomenon that alters the direction of light waves propagating through matter. Microscopes, lenses and prisms based on refraction are indispensable tools for controlling light beams at visible, infrared, ultraviolet and X-ray wavelengths
1
. In the past few decades, a range of extreme-ultraviolet and soft-X-ray sources has been developed in laboratory environments
2
–
4
and at large-scale facilities
5
,
6
. But the strong absorption of extreme-ultraviolet radiation in matter hinders the development of refractive lenses and prisms in this spectral region, for which reflective mirrors and diffractive Fresnel zone plates
7
are instead used for focusing. Here we demonstrate control over the refraction of extreme-ultraviolet radiation by using a gas jet with a density gradient across the profile of the extreme-ultraviolet beam. We produce a gas-phase prism that leads to a frequency-dependent deflection of the beam. The strong deflection near to atomic resonances is further used to develop a deformable refractive lens for extreme-ultraviolet radiation, with low absorption and a focal length that can be tuned by varying the gas pressure. Our results open up a route towards the transfer of refraction-based techniques, which are well established in other spectral regions, to the extreme-ultraviolet domain.
A refractive lens and a refractive prism for extreme-ultraviolet radiation have been developed that use the deflection of the radiation in an inhomogeneous jet of atoms.
Journal Article