Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
1 result(s) for "unbalanced gap time data"
Sort by:
Dependence modeling for recurrent event times subject to right-censoring with D-vine copulas
In many time-to-event studies, the event of interest is recurrent. Here, the data for each sample unit correspond to a series of gap times between the subsequent events. Given a limited follow-up period, the last gap time might be right-censored. In contrast to classical analysis, gap times and censoring times cannot be assumed independent, i.e., the sequential nature of the data induces dependent censoring. Also, the number of recurrences typically varies among sample units leading to unbalanced data. To model the association pattern between gap times, so far only parametric margins combined with the restrictive class of Archimedean copulas have been considered. Here, taking the specific data features into account, we extend existing work in several directions: we allow for nonparametric margins and consider the flexible class of D-vine copulas. A global and sequential (one- and two-stage) likelihood approach are suggested. We discuss the computational efficiency of each estimation strategy. Extensive simulations show good finite sample performance of the proposed methodology. It is used to analyze the association of recurrent asthma attacks in children. The analysis reveals that a D-vine copula detects relevant insights, on how dependence changes in strength and type over time.