Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
632
result(s) for
"underwater wireless sensor network"
Sort by:
RSS-Based Target Localization in Underwater Acoustic Sensor Networks via Convex Relaxation
2019
The received signal strength (RSS) based target localization problem in underwater acoustic wireless sensor networks (UWSNs) is considered. Two cases with respect to target transmit power are considered. For the first case, under the assumption that the reference of the target transmit power is known, we derive a novel weighted least squares (WLS) estimator by using an approximation to the RSS expressions, and then transform the originally non-convex problem into a mixed semi-definite programming/second-order cone programming (SD/SOCP) problem for reaching an efficient solution. For the second case, there is no knowledge on the target transmit power, and we treat the reference power as an additional unknown parameter. In this case, we formulate a WLS estimator by using a further approximation, and present an iterative ML and mixed SD/SOCP algorithm for solving the derived WLS problem. For both cases, we also derive the closed form expressions of the Cramer–Rao Lower Bounds (CRLBs) on root mean square error (RMSE). Computer simulation results show the superior performance of the proposed methods over the existing ones in the underwater acoustic environment.
Journal Article
An Efficient Metaheuristic-Based Clustering with Routing Protocol for Underwater Wireless Sensor Networks
by
Mohan, Prakash
,
Alotaibi, Youseef
,
Subramani, Neelakandan
in
Acoustics
,
Algorithms
,
Bandwidths
2022
In recent years, the underwater wireless sensor network (UWSN) has received a significant interest among research communities for several applications, such as disaster management, water quality prediction, environmental observance, underwater navigation, etc. The UWSN comprises a massive number of sensors placed in rivers and oceans for observing the underwater environment. However, the underwater sensors are restricted to energy and it is tedious to recharge/replace batteries, resulting in energy efficiency being a major challenge. Clustering and multi-hop routing protocols are considered energy-efficient solutions for UWSN. However, the cluster-based routing protocols for traditional wireless networks could not be feasible for UWSN owing to the underwater current, low bandwidth, high water pressure, propagation delay, and error probability. To resolve these issues and achieve energy efficiency in UWSN, this study focuses on designing the metaheuristics-based clustering with a routing protocol for UWSN, named MCR-UWSN. The goal of the MCR-UWSN technique is to elect an efficient set of cluster heads (CHs) and route to destination. The MCR-UWSN technique involves the designing of cultural emperor penguin optimizer-based clustering (CEPOC) techniques to construct clusters. Besides, the multi-hop routing technique, alongside the grasshopper optimization (MHR-GOA) technique, is derived using multiple input parameters. The performance of the MCR-UWSN technique was validated, and the results are inspected in terms of different measures. The experimental results highlighted an enhanced performance of the MCR-UWSN technique over the recent state-of-art techniques.
Journal Article
Recent Advances, Future Trends, Applications and Challenges of Internet of Underwater Things (IoUT): A Comprehensive Review
by
Sadiq, Muhammad
,
Liang, Junwei
,
Khan, Muhammad Asghar
in
Acoustics
,
Archaeology
,
autonomous underwater vehicles
2023
Oceans cover more than 70% of the Earth’s surface. For various reasons, almost 95% of these areas remain unexplored. Underwater wireless communication (UWC) has widespread applications, including real-time aquatic data collection, naval surveillance, natural disaster prevention, archaeological expeditions, oil and gas exploration, shipwreck exploration, maritime security, and the monitoring of aquatic species and water contamination. The promising concept of the Internet of Underwater Things (IoUT) is having a great influence in several areas, for example, in small research facilities and average-sized harbors, as well as in huge unexplored areas of ocean. The IoUT has emerged as an innovative technology with the potential to develop a smart ocean. The IoUT framework integrates different underwater communication techniques such as optical, magnetic induction, and acoustic signals. It is capable of revolutionizing industrial projects, scientific research, and business. The key enabler technology for the IoUT is the underwater wireless sensor network (UWSN); however, at present, this is characterized by limitations in reliability, long propagation delays, high energy consumption, a dynamic topology, and limited bandwidth. This study examines the literature to identify potential challenges and risks, as well as mitigating solutions, associated with the IoUT. Our findings reveal that the key contributing elements to the challenges facing the IoUT are underwater communications, energy storage, latency, mobility, a lack of standardization, transmission media, transmission range, and energy constraints. Furthermore, we discuss several IoUT applications while highlighting potential future research directions.
Journal Article
Chaotic Search-and-Rescue-Optimization-Based Multi-Hop Data Transmission Protocol for Underwater Wireless Sensor Networks
by
Alotaibi, Youseef
,
Subramani, Neelakandan
,
Alghamdi, Saleh
in
Acoustics
,
Algorithms
,
chaotic concept
2022
Underwater wireless sensor networks (UWSNs) have applications in several fields, such as disaster management, underwater navigation, and environment monitoring. Since the nodes in UWSNs are restricted to inbuilt batteries, the effective utilization of available energy becomes essential. Clustering and routing approaches can be employed as energy-efficient solutions for UWSNs. However, the cluster-based routing techniques developed for conventional wireless networks cannot be employed for a UWSN because of the low bandwidth, spread stay, underwater current, and error probability. To resolve these issues, this article introduces a novel chaotic search-and-rescue-optimization-based multi-hop data transmission (CSRO-MHDT) protocol for UWSNs. When using the CSRO-MHDT technique, cluster headers (CHs) are selected and clusters are prearranged, rendering a range of features, including remaining energy, intracluster distance, and intercluster detachment. Additionally, the chaotic search and rescue optimization (CSRO) algorithm is discussed, which is created by incorporating chaotic notions into the classic search and rescue optimization (SRO) algorithm. In addition, the CSRO-MHDT approach calculates a fitness function that takes residual energy, distance, and node degree into account, among other factors. A distinctive aspect of the paper is demonstrated by the development of the CSRO algorithm for route optimization, which was developed in-house. To validate the success of the CSRO-MHDT method, a sequence of tests were carried out, and the results showed the CSRO-MHDT method to have a packet delivery ratio (PDR) of 88%, whereas the energy-efficient clustering routing protocol (EECRP), the fuzzy C-means and moth–flame optimization (FCMMFO), the fuzzy scheme and particle swarm optimization (FBCPSO), the energy-efficient grid routing based on 3D cubes (EGRC), and the low-energy adaptive clustering hierarchy based on expected residual energy (LEACH-ERE) methods have reached lesser PDRs of 83%, 81%, 78%, 77%, and 75%, respectively, for 1000 rounds. The CSRO-MHDT technique resulted in higher values of number of packets received (NPR) under all rounds. For instance, with 50 rounds, the CSRO-MHDT technique attained a higher NPR of 3792%.
Journal Article
A reliable energy-efficient pressure-based routing protocol for underwater wireless sensor network
by
Kaiwartya, Omprakash
,
Chizari, Hassan
,
Muhammad Shafie Bin Abd Latiff
in
Algorithms
,
Art techniques
,
Computer simulation
2018
Recently, Underwater Wireless Sensor Networks (UWSNs) has witnessed significant attention from both academia and industries in research and development, due to the growing number of applications for wide range of purposes including commercial, scientific, environmental and military. Some of the major applications include pollution monitoring, tactical surveillance, tsunami warnings and offshore exploration. Efficient communication among sensors in UWSNs is a challenging task due to the harsh environments and peculiar characteristics of UWSNs. Therefore, design of routing protocol for efficient communication among sensors and sink is one of the fundamental research themes in UWSNs. In this context, this paper proposes a location-free Reliable and Energy efficient Pressure-Based Routing (RE-PBR) protocol for UWSNs. RE-PBR considers three parameters including link quality, depth and residual energy for balancing energy consumption and reliable data delivery. Specifically, link quality is estimated using triangle metric method. A light weight information acquisition algorithm is developed for efficient knowledge discovery of the network. Multi-metric data forwarding algorithm is designed based on route cost calculation which utilizes residual energy and link quality. Simulations are carried out in NS-2 with Aqua-Sim package to evaluate the performance of RE-PBR. The performance of the proposed protocol is compared with the stat-of-the-art techniques: DBR and EEDBR. The comprehensive performance evaluation attests the benefit of RE-PBR as compared to the state-of-the-art techniques in terms of network lifetime, energy consumption, end-to-end delay and packet delivery ratio.
Journal Article
A Comprehensive Study on the Internet of Underwater Things: Applications, Challenges, and Channel Models
by
Lin, Yi-Shan
,
Huang, Chun-Ju
,
Kao, Chien-Chi
in
Internet of Things
,
Internet of Things (IoT)
,
Internet of Underwater Things (IoUT)
2017
The Internet of Underwater Things (IoUT) is a novel class of Internet of Things (IoT), and is defined as the network of smart interconnected underwater objects. IoUT is expected to enable various practical applications, such as environmental monitoring, underwater exploration, and disaster prevention. With these applications, IoUT is regarded as one of the potential technologies toward developing smart cities. To support the concept of IoUT, Underwater Wireless Sensor Networks (UWSNs) have emerged as a promising network system. UWSNs are different from the traditional Territorial Wireless Sensor Networks (TWSNs), and have several unique properties, such as long propagation delay, narrow bandwidth, and low reliability. These unique properties would be great challenges for IoUT. In this paper, we provide a comprehensive study of IoUT, and the main contributions of this paper are threefold: (1) we introduce and classify the practical underwater applications that can highlight the importance of IoUT; (2) we point out the differences between UWSNs and traditional TWSNs, and these differences are the main challenges for IoUT; and (3) we investigate and evaluate the channel models, which are the technical core for designing reliable communication protocols on IoUT.
Journal Article
Energy-Efficient Clustering Multi-Hop Routing Protocol in a UWSN
by
Nguyen, Huy-Hung
,
Nguyen, Nhat-Tien
,
Voznak, Miroslav
in
Acoustics
,
clustering
,
depth-based routing
2021
Underwater wireless sensor networks are currently seeing broad research in various applications for human benefits. Large numbers of sensor nodes are being deployed in rivers and oceans to monitor the underwater environment. In the paper, we propose an energy-efficient clustering multi-hop routing protocol (EECMR) which can balance the energy consumption of these nodes and increase their network lifetime. The network area is divided into layers with regard to the depth level. The data sensed by the nodes are transmitted to a sink via a multi-hop routing path. The cluster head is selected according to the depth of the node and its residual energy. To transmit data from the node to the sink, the cluster head aggregates the data packet of all cluster members and then forwards them to the upper layer of the sink node. The simulation results show that EECMR is effective in terms of network lifetime and the nodes’ energy consumption.
Journal Article
Survey on underwater delay/disruption tolerant wireless sensor network routing
by
Chao, Han-Chieh
,
Chen, Chi-Yuan
,
Cho, Hsin-Hung
in
Access methods and protocols, osi model
,
Applied sciences
,
Computer networks
2014
Underwater wireless sensor networks (UWSNs) have recently received a significant amount of attention. Since they have delay/disruption-tolerant networks (DTNs) characteristics, the design of any UWSN scheme must take DTN influences into account, especially in routing protocols. Many researchers have proposed various DTN routing techniques for different types of DTN routing schemes in UWSNs. The authors survey state-of-the-art DTN routing protocols, and use the definition of DTN to classify these proposals into scheduled contact, opportunistic contact and predicted contact. Furthermore, the authors analyse the detailed information in order to draw up a comparison table and also expect to inspire more research into this topic in the future.
Journal Article
Challenges, Threats, Security Issues and New Trends of Underwater Wireless Sensor Networks
2018
With the advances in technology, there has been an increasing interest from researchers and industrial institutions in the use of underwater wireless sensor networks (UWSNs). Constrained by the open acoustic channel, harsh underwater environment, and their own particularities, UWSNs are vulnerable to a wide class of security threats and malicious attacks. However, most existing research into UWSNs has not taken security into consideration. Moreover, the existing relatively mature security mechanisms for WSNs cannot be directly utilized in UWSNs. For these reasons, this article aims to present a comprehensive overview of the particularities, constraints, attacks, challenges and current security mechanisms of UWSNs. In addition, challenging, open and hot research topics are outlined.
Journal Article
QoSRP: A Cross-Layer QoS Channel-Aware Routing Protocol for the Internet of Underwater Acoustic Sensor Networks
by
Faheem, Muhammad
,
Gungor, Vehbi Cagri
,
Raza, Basit
in
acoustic sensor networks
,
Acoustics
,
Autonomous underwater vehicles
2019
Quality of service (QoS)-aware data gathering in static-channel based underwater wireless sensor networks (UWSNs) is severely limited due to location and time-dependent acoustic channel communication characteristics. This paper proposes a novel cross-layer QoS-aware multichannel routing protocol called QoSRP for the internet of UWSNs-based time-critical marine monitoring applications. The proposed QoSRP scheme considers the unique characteristics of the acoustic communication in highly dynamic network topology during gathering and relaying events data towards the sink. The proposed QoSRP scheme during the time-critical events data-gathering process employs three basic mechanisms, namely underwater channel detection (UWCD), underwater channel assignment (UWCA) and underwater packets forwarding (UWPF). The UWCD mechanism finds the vacant channels with a high probability of detection and low probability of missed detection and false alarms. The UWCA scheme assigns high data rates channels to acoustic sensor nodes (ASNs) with longer idle probability in a robust manner. Lastly, the UWPF mechanism during conveying information avoids congestion, data path loops and balances the data traffic load in UWSNs. The QoSRP scheme is validated through extensive simulations conducted by NS2 and AquaSim 2.0 in underwater environments (UWEs). The simulation results reveal that the QoSRP protocol performs better compared to existing routing schemes in UWSNs.
Journal Article