Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
4,727
result(s) for
"urban green spaces"
Sort by:
Using Crowdsourced Big Data to Unravel Urban Green Space Utilization during COVID-19 in Guangzhou, China
2022
Urban green spaces (UGSs) can meet the spiritual and cultural needs of citizens and provide various ecosystem services. In the context of the COVID-19 pandemic, the utilization of UGSs has been affected in various countries worldwide. This study considered 13 UGSs in Guangzhou, China, as examples. It obtained user check-in data by sampling the check-in pages of Sina Weibo locations using a Python-based web crawler program. The study was conducted for 731 days from 1 October 2019 to 30 September 2021, during different phases of the pandemic. Based on automated Chinese corpus recognition technology, statistical results were obtained after periodization and sentiment calculation. The study assessed the pandemic’s impact on the use of UGSs by analyzing the time, frequency, and emotions of residents visiting UGSs. The study concluded that the emotions of UGS users during COVID-19 tended to be positive. They tended to choose UGSs with low expected population density and visited UGSs on weekdays. Additionally, the religious attributes of UGSs also influenced their utilization.
Journal Article
Quantifying spatial associations between effective green spaces and cardiovascular and cerebrovascular diseases by applying volunteered geo-referenced data
by
Cao, Zheng
,
Wu, Zhifeng
,
Guo, Guanhua
in
Air pollution
,
cardiovascular and cerebrovascular diseases
,
Cerebrovascular diseases
2022
Among the top public health risks, cardiovascular and cerebrovascular diseases cause more than 1 million deaths annually globally. Due to the calming effect of green spaces and their ability to trap air pollutants, urban green spaces are considered have close associations with cardiovascular and cerebrovascular diseases. However, ignoring the spatial heterogeneity of different urban green space types and considering only the configuration or compositions of urban green spaces has resulted in inconsistent and contradictory conclusions. Therefore, by introducing Tencent urban density data, four effective green spaces (EGSs) were categorized. Category 1 EGSs, which exhibit a high increasing of visitors and areas, accounted for the smallest areal percentage (0.81%). Category 2 EGSs, which exhibit a low increasing of visiting and high increasing of areas, accounted for the highest areal percentage (42.51%). Category 3 EGSs, which exhibit a high increasing of visiting and low increasing of areas, accounted for 13.70% of the total EGS areas. Category 4 EGSs, which exhibit a low increasing of visiting and areas, accounted for 3.75% of the total EGS areas. Using a geographically weighted regression model, spatial associations between EGS and cardiovascular and cerebrovascular diseases were quantified. Consequently, these spatial associations varied among EGS types and seasons. EGS configurations (perimeters of vegetation and areas of vegetation) have a more significant association with cardiovascular and cerebrovascular diseases than the composition (normalized difference vegetation index) of EGS. Spatial associations implying stronger relationships were observed in EGS1. The strongest association was found in summer. Enlarge the coverage of evergreen vegetation in all EGS is first considered to enhance the negative association between EGS and chronic diseases. A methodology framework was provided to classify urban green space types using multi-source data. Suggestions for how to plan different urban green spaces for developing sustainable cities have been provided in this study, which offer scientific support to urban managers and planners for effective decision making.
Journal Article
Effects of Environmental Features in Small Public Urban Green Spaces on Older Adults’ Mental Restoration: Evidence from Tokyo
2022
Exposure to small public urban green spaces (SPUGS) has been demonstrated to have mental benefits for older adults. However, studies on identifying the objective environmental features of SPUGS and their effects on mental restoration for older adults remain limited. This study employed a multilevel regression model to investigate the restorative and vitalizing effects of the environmental features of 11 SPUGS in Tokyo. Onsite measurements were conducted in Kita-Ku, and 202 older adults were surveyed. The results showed that: (1) The fitting curve of the green view index and Restoration Outcome Scale (ROS) score showed an inverted U shape—both green view index and boundary enclosure had a strong impact on the mental restoration of older adults; (2) The colorfulness index showed the strongest relationship with the vitalizing effect. (3) The sky view factor and number of seats only influenced the ROS score, while the results of revitalization suggest that large areas of water should be avoided. (4) Physiological Equivalent Temperature (PET) was also confirmed to have negative effects on the mental restoration of older adults in autumn. These empirical findings can be used as a resource to promote the mental health of older adults in the design of SPUGS in high-density Asian countries.
Journal Article
Understanding residents' engagement for the protection of urban green spaces by enriching the value‐belief‐norm theory with relational values—A case study of Munich (Germany)
by
Tomomi Saito
,
Martina Van Lierop
,
Stephan Pauleit
in
Ecology
,
GF1-900
,
Human ecology. Anthropogeography
2024
Journal Article
Treated Wastewater Use for Maintenance of Urban Green Spaces for Enhancing Regulatory Ecosystem Services and Securing Groundwater
by
Manish Ramaiah
,
Ram Avtar
,
Pankaj Kumar
in
Carbon sequestration
,
Circular economy
,
Cost benefit analysis
2022
Rising land surface temperature (LST), urban heat island (UHI) effects, and stress on surface-, processed-, potable-, and ground-water resources are some undesirable ecological changes due to rapid urbanization. Treating and reusing city-generated wastewater for maintaining urban green spaces (UGS) helps in reducing/preventing groundwater extraction, ensuring sufficient supply of potable water, and bringing down LST. However, the benefits of reusing treated wastewater in UGS for enhancing regulatory ecosystem services (RES) and ushering in a circular economy are yet to be realized. In view of these, the transportation costs of treated wastewater for irrigating the UGS of Panaji city—proposed to be developed as a smart city—were assessed. Field surveys were conducted at seven gardens/parks to collect the primary data on vegetation type (ground cover, hedge plants, and trees) and their daily water requirement. As the main focus of this study, a cost–benefit analysis of (a) drawing the groundwater using borewells versus use of treated wastewater from the city’s STP, and (b) two modes of treated wastewater transport: water tankers vs. pipeline was performed. Our analyses suggest that the copiously available 14 MLD treated wastewater from the STP, which meets all the safety standards, is far in excess of the current requirement of 6.24 MLD for watering the vegetation in all 17 parks/gardens in the city. Pipeline is an efficient (less energy, labor, and time) and economical (~47% more than water that is tanker-based) transportation mode. By utilizing the otherwise unused treated wastewater, which is processed at a cost of over USD half a million annually, the RES offered by the use of treated wastewater are (a) partially curtailing a combined loss of ~16 MLD due to the extraction of groundwater plus evapotranspiration (@8.86 mm d−1) from Panaji city’s 1.86 km2 UGS, and (b) reduction in LST ~3–4 °C in all of Panaji city. In addition, with the proficient and sustainable management of UGS and the meeting of many UNSDGs, the enhanced vegetation growth plus elevated carbon sequestration rates in the UGS are possible through the reuse of treated wastewater.
Journal Article
An assessment of the correlation between urban green space supply and socio-economic disparities of Tehran districts—Iran
2022
Contact with UGS (urban green spaces) is a critical element for urban quality of life and an essential aspect of environmental justice, so all citizens should be able to access UGS regardless of their social and economic condition. In this regard, several studies have shown a positive correlation between UGS justice with socio-economic status in different contexts. In recent decades, Tehran has also experienced much wider socio-economic inequalities, reflected in its spatial configuration. Therefore, this study explored the possible correlation between the UGS supply and accessibility in the 22 Tehran municipal districts and their socio-economic development level. For this purpose, UGS supply (per capita) and accessibility (areas within 800 m walking distance to UGS) indicators are used to assess the UGS justice in Tehran. The research data are drawn from official spatial and statistical data, analysed using ArcGIS. This quantitative data are converted into map layers to shape a basis for UGS assessment indicators in conjunction with socio-economic status. The findings show an unbalanced distribution of UGS in Tehran. However, the areas with highest socio-economic status are at an optimum level of UGS justice in relation to all 22 districts, but no direct correlation confirms the same results for areas with lower socio-economic status.
Journal Article
Calculation of the Optimal Scale of Urban Green Space for Alleviating Surface Urban Heat Islands: A Case Study of Xi’an, China
2024
Research has demonstrated that urban green spaces play a crucial role in mitigating the severe urban heat island (UHI) effect. However, existing studies often suffer from limitations such as the neglect of the cooling effect of water bodies within the green spaces and incomplete considerations of the overall cooling effect. These limitations may lead to inaccuracies in the research findings. Therefore, the present study takes the city of Xi’an as a case study to explore the optimal green space size for achieving efficient cooling. The results indicate that (i) urban green spaces exhibit robust cooling effects, with variations observed among the various types; (ii) for community parks without water, and for street gardens, the optimal areas of these green spaces are 3.44 and 0.83 hectares, respectively; (iii) for community parks with water, the area of internal water bodies should ideally be maintained at around 29.43% of the total green space area in order to achieve an optimal cooling efficiency. In conclusion, this study introduces a new perspective and new optimization methods for urban green space planning, thereby offering scientific guidance to urban planners in formulating effective development and management policies and urban planning schemes.
Journal Article
The Cooling Effect and Its Stability in Urban Green Space in the Context of Global Warming: A Case Study of Changchun, China
2025
The urban heat island effect, triggered by global warming and rapid urbanization, has negatively impacted residents’ lives. It has been shown that urban green space (UGS) can improve the urban thermal environment. However, the stability and influencing factors of the urban green space cooling effect (UGSCE) in the context of climate change remain unclear. In this paper, we study the area within the Fifth Ring Road of Changchun City, using multi-source remote sensing image data to quantify and analyze the influencing factors of the cooling effect of urban green space and its stability on both regional and patch scales. The results show that on the regional scale, urban green spaces in Changchun have a strong cooling effect on the surrounding environment, which increases with the surface temperature (LST). However, there is a large fluctuation in the cooling effect. On the patch scale, the cooling effect of 35 green spaces showed a small increasing trend from 2013 to 2024. The cooling extent (CE) was more stable across temperatures relative to the cooling intensity (CI). Factors such as the green space area (A), perimeter (P), landscape shape index (LSI), and mean enhanced vegetation index (MEVI) had different degrees of influence on the cooling effect of green space and its stability. Green spaces with a high MEVI had a stronger cooling effect and stability. Based on this, planning suggestions such as increasing vegetation amount, maintaining green space area, optimizing green space morphology, and focusing on blue–green space are proposed to enhance the cooling effect of urban green space and its stability, which would improve the thermal environment of the city and enhance the comfort of residents. This study provides a reference basis for the scientific planning of urban green space and provides a scientific basis and practical guidance for the sustainable development of the city.
Journal Article
Reconsidering green belts, green wedges and greenways
by
Meneguetti, Karin Schwabe
,
Oliveira, Fabiano Lemes de
in
Built environment
,
Cities
,
Green belts
2021
Facing accelerated urbanization and landscape alteration, cities expand on the territory showing better or worse relationships between built environment and green spaces. Based on recent literature review, this article discusses the green wedges, green belts and greenway planning models in order to evaluate their capability in answering contemporary ecological and social issues. The article presents a conceptual overview of the selected planning models through a recent literature review, looking at the fundamental concepts of green infrastructure; then, it enlightens the connections between the spatial forms and the functions derived of these forms. These three models are connected infrastructures, varying between the ring, the star or linear forms. What differs the most is the capacity to encompass existing patches like forests or other valuable areas and the proximity and distribution of green spaces throughout the city. Whilst green belts, for their fringe condition, distance itself from the majority of inner-city dwellers, both green wedges and greenways can cross the urban fabric, and reach a greater number of neighborhoods, although the simple existence of these features does not guarantee their social functions. These findings have significant implications for the design of city expansions and can help to configure better neighborhoods in growing cities.
Journal Article
Does the Spatial Pattern of Plants and Green Space Affect Air Pollutant Concentrations? Evidence from 37 Garden Cities in China
2022
Relevant studies have demonstrated that urban green spaces composed of various types of plants are able to alleviate the morbidity and mortality of respiratory diseases, by reducing air pollution levels. In order to explore the relationship between the spatial pattern of urban green spaces and air pollutant concentrations, this study takes 37 garden cities with subtropical monsoon climate in China as the research object and selects the urban air quality monitoring data and land use type data in 2019 to analyze the relationship between the spatial pattern and the air pollutant concentration through the landscape metrics model and spatial regression model. Moreover, the threshold effect of the impact of green space on air pollutant concentrations is estimated, as well. The results showed that the spatial pattern of urban green space was significantly correlated with the concentrations of PM2.5 (PM with aerodynamic diameters of 2.5 mmor less), NO2 (Nitrogen Dioxide), and SO2 (Sulfur dioxide) pollutants in the air, while the concentrations of PM10 (PM with aerodynamic diameters of 10 mmor less) pollutants were not significantly affected by the green space pattern. Among them, the patch shape index (LSI), patch density (PD) and patch proportion in landscape area (PLAND) of forest land can affect the concentration of PM2.5, NO2, and SO2, respectively. The PLAND, PD, and LSI of grassland and farmland can also have an additional impact on the concentration of SO2 pollutants. The study also found that there was a significant threshold effect within the impact mechanism of urban green space landscape pattern indicators (LSI, PD, PLAND) on the concentrations of PM2.5, NO2, and SO2 air pollutants. The results of this study not only clarified the impact mechanism of the spatial pattern of urban green space on air pollutant concentrations but also provided quantitative reference and scientific basis for the optimization and updating of urban green space to promote public health.
Journal Article