Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
11 result(s) for "variant PEDV"
Sort by:
PEDV: Insights and Advances into Types, Function, Structure, and Receptor Recognition
Porcine epidemic diarrhea virus (PEDV) has been endemic in most parts of the world since its emergence in the 1970s. It infects the small intestine and intestinal villous cells, spreads rapidly, and causes infectious intestinal disease characterized by vomiting, diarrhea, and dehydration, leading to high mortality in newborn piglets and causing massive economic losses to the pig industry. The entry of PEDV into cells is mediated by the binding of its spike protein (S protein) to a host cell receptor. Here, we review the structure of PEDV, its strains, and the structure and function of the S protein shared by coronaviruses, and summarize the progress of research on possible host cell receptors since the discovery of PEDV.
Comparative Genomic Analysis of Classical and Variant Virulent Parental/Attenuated Strains of Porcine Epidemic Diarrhea Virus
Since 2010, the variant porcine epidemic diarrhea virus (PEDV) has been the etiological agent responsible for the outbreak of porcine epidemic diarrhea (PED) worldwide. In this study, a variant PEDV strain YN1 was isolated, serially propagated on the Vero cells and was characterized for 200 passages. To better elucidate the molecular basis of Vero cell adaptation of variant PEDV strains, we sequenced, compared, and analyzed the full-genome sequences of parental YN1 and passages 15, 30, 60, 90, 144, and 200. The results showed that the variations increased with the viral passage. The nucleotides sequences of non-structural protein (NSP)2, NSP4-7, NSP10, NSP12 and NSP13 genes did not change during the Vero cell adaptation process. After comparison of the variation characteristic of classical, variant virulent/attenuated strains, it was found that attenuation of PEDV virus was associated with 9-26 amino acid (aa) changes in open reading frames (ORF) 1a/b and S protein, early termination in ORF3, 1–3 aa changes in E, M and N protein and some nucleotide sequences’ synonymous mutations. The aa deletion at about 144 aa of S protein could be the attenuation marker for the PEDV. The pig study showed that the early termination in ORF3 was more important for virus cell adaptation than virus attenuation.
Phylogenetic Analysis of Porcine Epidemic Diarrhea Virus (PEDV) during 2020–2022 and Isolation of a Variant Recombinant PEDV Strain
Porcine epidemic diarrhea (PED) is an acute, highly contagious, and infectious disease caused by porcine epidemic diarrhea virus (PEDV). PEDV can affect pigs of all ages, with 50~100% mortality in neonatal piglets and substantial economic losses in the swine industry. In the present study, 347 fecal and intestinal samples were collected from seven regions in China during 2020–2022. A comprehensive molecular investigation of the spike (S) gene of PEDV strains was carried out, which included phylogenetic analysis of the obtained PEDV sequences. Epidemiological surveillance data indicate that the GIIc subgroup strains are widely distributed among pigs. A PEDV strain was successfully isolated from positive small intestine samples and identified through RT-PCR detection using specific N gene primers of PEDV, indirect immunofluorescence assay (IFA), TEM analysis, genome sequencing, and full-length S gene analysis, named PEDV/SC/2022. RDP and SimPlot analysis showed that the isolate originated from the recombination of PEDV/AH2012 and PEDV/AJ1102. In conclusion, our findings contribute to the current understanding of PEDV epidemiology and provide valuable information for the control of PED outbreaks in China.
Development of a Next-Generation Vaccine Platform for Porcine Epidemic Diarrhea Virus Using a Reverse Genetics System
For the past three decades, the porcine epidemic diarrhea virus (PEDV) has remained an enormous threat to the South Korean swine industry. The scarcity of an effective method for manipulating viral genomes has impeded research progress in PEDV biology and vaccinology. Here, we report the development of reverse genetics systems using two novel infectious full-length cDNA clones of a Korean highly pathogenic-G2b strain, KNU-141112, and its live attenuated vaccine strain, S DEL5/ORF3, in a bacterial artificial chromosome (BAC) under the control of a eukaryotic promoter. Direct transfection of cells with each recombinant BAC clone induced cytopathic effects and produced infectious progeny. The reconstituted viruses, icKNU-141112 and icS DEL5/ORF3, harboring genetic markers, displayed phenotypic and genotypic properties identical to their respective parental viruses. Using the DNA-launched KNU-141112 infectious cDNA clone as a backbone, two types of recombinant viruses were generated. First, we edited the open reading frame 3 (ORF3) gene, as cell-adapted strains lose full-length ORF3, and replaced this region with an enhanced green fluorescent protein (EGFP) gene to generate icPEDV-EGFP. This mutant virus presented parental virus-like growth kinetics and stably retained robust EGFP expression, indicating that ORF3 is dispensable for PEDV replication in cell culture and is a tolerant location for exogeneous gene acceptance. However, the plaque size and syncytia phenotypes of ORF3-null icPEDV-EGFP were larger than those of icKNU-141112 but similar to ORF3-null icS DEL5/ORF3, suggesting a potential role of ORF3 in PEDV cytopathology. Second, we substituted the spike (S) gene with a heterologous S protein, designated S51, from a variant of interest (VOI), which was the most genetically and phylogenetically distant from KNU-141112. The infectious recombinant VOI, named icPEDV-S51, could be recovered, and the rescued virus showed indistinguishable growth characteristics compared to icKNU-141112. Virus cross-neutralization and structural analyses revealed antigenic differences in S between icKNU-141112 and icPEDV-S51, suggesting that genetic and conformational changes mapped within the neutralizing epitopes of S51 could impair the neutralization capacity and cause considerable immune evasion. Collectively, while the established molecular clones afford convenient, versatile platforms for PEDV genome manipulation, allowing for corroborating the molecular basis of viral replication and pathogenesis, they also provide key infrastructural frameworks for developing new vaccines and coronaviral vectors.
Detection and Molecular Diversity of Spike Gene of Porcine Epidemic Diarrhea Virus in China
Since late 2010, porcine epidemic diarrhea virus (PEDV) has rapidly disseminated all over the China and caused considerable morbidity and high mortality (up to 100%) in neonatal piglets. 79.66% (141 of 177) pig farms in 29 provinces (excluding Tibet and Hainan, China) and 72.27% (417 of 577) samples were positive for PEDV confirmed by reverse transcription-polymerase chain reaction (RT-PCR). The full-length S genes of representative field strains were sequenced. 33 field strains share 93.5%–99.9% homologies with each other at the nucleotide sequence level and 92.3%–99.8% homologies with each other at the amino acids sequence level. Most field strains have nucleotide deletion and insertion regions, and show lower homologies (93.5%–94.2%) with Chinese classical strain CH/S, however higher homologies (97.1%–99.3%) with recent strain CHGD-1. The phylogenetic analysis showed there are classical strains and variants prevailing in pig herd in China. PEDV has a high detection rate in pig herds in China. Sequence analysis indicated the S genes of recent field strains have heterogeneity and the variants are predominant.
Deletion in the S1 Region of Porcine Epidemic Diarrhea Virus Reduces the Virulence and Influences the Virus-Neutralizing Activity of the Antibody Induced
Porcine epidemic diarrhea virus (PEDV) causes severe diarrhea and a high rate of mortality in suckling pigs. The epidemic of PEDV that occurred after 2013 was caused by non-insertion and deletion of S gene (S-INDEL) PEDV strains. During this epidemic, a variant of the non-S-INDEL PEDV strain with a large deletion of 205 amino acids on the spike gene (5-17-V) was also found to co-exist with a non-S-INDEL PEDV without deletion (5-17-O). Herein, we describe the differences in the complete genome, distribution, virulence, and antigenicity between strain 5-17-O and variant strain 5-17-V. The deletion of 205 amino acids was primarily located in the S1O domain and was associated with milder clinical signs and lower mortality in suckling pigs than those of the 5-17-O strain. The 5-17-V strain-induced antibody did not completely cross-neutralize the 5-17-O strain. In conclusion, the deletion in the S1 region reduces the virulence of PEDV and influences the virus-neutralizing activities of the antibody it induces.
Detection and phylogenetic analysis of porcine epidemic diarrhea virus in central China based on the ORF3 gene and the S1 gene
Background Porcine epidemic diarrhea (PED) has increased in severity in China since 2010. To investigate further the infectivity, genetic diversity and molecular epidemiology of its causative agent, the porcine epidemic diarrhea virus (PEDV), we assessed 129 clinical samples, which were the intestinal tissue of piglets with severe diarrhea, from 17 cities in central China. Both the spike (S) glycoprotein (S1, 1–789 amino acids (aa)) and the full-length ORF3 gene of 21 representative field strains from 21 farms in 11 cities were sequenced and analysed. Methods PEDV was detected by reverse transcription-polymerase chain reaction (RT-PCR), and S1 and ORF3 sequences were processed by the Clustal W method via DNAMAN 8 software, and phylogenetic trees were constructed by the neighbor-joining method using MEGA 6 software. Results The prevalence of PEDV was 92.25% and was detected in 119 of 129 samples, with 94.03% (63 of 67) of pig farms harbouring the disease. According to the phylogenetic analysis of the S1 genes, our isolates all fell into group G2 (variants) and showed a close relationship to isolates from Chinese (HN1303, CH/ZMDZY/11 and AJ1102), Korean (AD01), American (MN, IA1, IA2 and 13–019349) sources, and these isolates differed genetically from other Chinese (LZC, CH/HNZZ/2011 and SD-M) and Korean (SM98) strains as well Japanese (83-P5 and MK) strains. In addition, our isolates differed from attenuated vaccine strains, CV777 (used in China) and DR13 (used in Korea). According to our derived amino acid sequence analysis, we detected one novel variant PEDV, viz: CH/HNLY, with 4-aa insertion/deletion (RSSS/T) at position 375 and 1-aa (D) deletion at position 430 compared to the CV777 attenuated strain. These mutations were located on the receptor binding domain. Our ORF3 gene analyses showed that the prevalent PEDV isolates were variants, and the isolated strains differed genetically from the vaccine strains. Conclusions These findings illustrated the existence of genetic diversity among geographically distinct PEDV strains, and our study has provided an impetus to conduct further research on the PEDV receptor binding protein and on the new and efficacious vaccines design.
Identification of porcine epidemic diarrhea virus variant with a large spike gene deletion from a clinical swine sample in the United States
Two genetically different porcine epidemic diarrhea virus (PEDV) strains have been identified in the USA: US prototype (also called non-S INDEL) and S INDEL PEDVs. In February 2017, a PEDV variant (USA/OK10240-8/2017) was identified in a rectal swab from a sow farm in Oklahoma, USA. Complete genome sequence analyses indicated this PEDV variant was genetically similar to US non-S INDEL strain but had a continuous 600-nt (200-aa) deletion in the N-terminal domain of the spike gene compared to non-S INDEL PEDVs. This is the first report of detecting PEDV bearing large spike gene deletion in clinical swine samples in the USA.
Evaluation of serological cross-reactivity and cross-neutralization between the United States porcine epidemic diarrhea virus prototype and S-INDEL-variant strains
Background At least two genetically different porcine epidemic diarrhea virus (PEDV) strains have been identified in the United States (U.S. PEDV prototype and S-INDEL-variant strains). The current serological assays offered at veterinary diagnostic laboratories for detection of PEDV-specific antibody are based on the U.S. PEDV prototype strain. The objectives of this study were: 1) isolate the U.S. PEDV S-INDEL-variant strain in cell culture; 2) generate antisera against the U.S. PEDV prototype and S-INDEL-variant strains by experimentally infecting weaned pigs; 3) determine if the various PEDV serological assays could detect antibodies against the U.S. PEDV S-INDEL-variant strain and vice versa. Results A U.S. PEDV S-INDEL-variant strain was isolated in cell culture in this study. Three groups of PEDV-negative, 3-week-old pigs (five pigs per group) were inoculated orally with a U.S. PEDV prototype isolate (previously isolated in our lab), an S-INDEL-variant isolate or virus-negative culture medium. Serum samples collected at 0, 7, 14, 21 and 28 days post inoculation were evaluated by the following PEDV serological assays: 1) indirect fluorescent antibody (IFA) assays using the prototype and S-INDEL-variant strains as indicator viruses; 2) virus neutralization (VN) tests against the prototype and S-INDEL-variant viruses; 3) PEDV prototype strain whole virus based ELISA; 4) PEDV prototype strain S1-based ELISA; and 5) PEDV S-INDEL-variant strain S1-based ELISA. The positive antisera against the prototype strain reacted to and neutralized both prototype and S-INDEL-variant viruses, and the positive antisera against the S-INDEL-variant strain also reacted to and neutralized both prototype and S-INDEL-variant viruses, as examined by IFA antibody assays and VN tests. Antibodies against the two PEDV strains could be detected by all three ELISAs although detection rates varied to some degree. Conclusions These data indicate that the antibodies against U.S. PEDV prototype and S-INDEL-variant strains cross-reacted and cross-neutralized both strains in vitro. The current serological assays based on U.S. PEDV prototype strain can detect antibodies against both U.S. PEDV strains.
A retrospective study detects a novel variant of porcine epidemic diarrhea virus in England in archived material from the year 2000
Outbreaks of porcine epidemic diarrhea (PED) were first recorded in England in the 1970s and continued to be confirmed until 2002. Retrospective analysis of archived material from one of the last confirmed cases in England in the year 2000 demonstrates the previous existence of a very diverse PED virus strain. Following the outbreaks of PED in North America in 2013, there has been renewed interest in phylogenetic analysis of sequences from PEDV strains worldwide. There is a gap in the available sequence data between the mid 1980s and the mid 2000s. This work is an example of how this gap can be at least partially filled by the examination of archived material.