Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Language
      Language
      Clear All
      Language
  • Subject
      Subject
      Clear All
      Subject
  • Item Type
      Item Type
      Clear All
      Item Type
  • Discipline
      Discipline
      Clear All
      Discipline
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
31 result(s) for "vibrotactile frequency"
Sort by:
Discrimination Accuracy of Sequential Versus Simultaneous Vibrotactile Stimulation on the Forearm
We examined discrimination accuracy of vibrotactile patterns on the upper forearm using a 2 × 3 array of voice coil actuators to generate 100 Hz vibrotactile stimulation. We evaluated participants’ ability to recognize distinct vibrotactile patterns presented both simultaneously (1000 ms) and sequentially (500 ms with a 450 ms interval). Recognition accuracy was significantly higher for sequential (93.24%) than for simultaneous presentation (26.15%). Patterns using 2–3 actuators were recognized more accurately than those using 4–5 actuators. During sequential presentation, there were primacy and recency effects; accuracy was higher for the initial and final stimulations in a sequence. Over time, participants also demonstrated a learning effect, becoming more adept at recognizing and interpreting vibrotactile patterns. This underscores the potential for skill development and emphasizes the value of training for wearable vibrotactile devices. We discuss the implications of these findings for the design of tactile communication devices and wearable technology.
Effects of Stimulus Frequency and Location on Vibrotactile Discrimination Performance Using Voice Coil Actuators on the Forearm
What are the effects of frequency variation of vibrotactile stimuli on localization acuity? The precise localization of vibrotactile stimuli is crucial for applications that are aimed at conveying vibrotactile information. In order to evaluate the ability to distinguish between vibrotactile stimuli based on their frequency and location on the forearm, we used a relative point localization method. Participants were presented with pairs of sequential vibrotactile stimuli at three possible locations on the forearm and asked to determine whether the second stimulation occurred at the same location as the first one in the pair or not. The stimulation frequency varied between 100 Hz, 150 Hz, 200 Hz and 250 Hz, which covers the range of frequencies that human observers are most sensitive to. The amplitude was kept constant. Our results revealed that the ability to discriminate between actuators remained unaffected by variations in the frequency of vibrotactile stimulation within the tested frequency range. The accuracy of the tactile discrimination task was heavily dependent on the location of the stimulation on the forearm, with the highest accuracy close to the wrist and elbow, locations that may serve as tactile anchor points. Our results highlight the critical role of stimulation location in precise vibrotactile localization and the importance of careful consideration of location in the design of forearm-mounted vibrotactile devices.
The capacity and cognitive processing of vibrotactile working memory for frequency
A hallmark of working memory (WM) is its limited capacity. While visual and verbal domains of WM are able to store multiple items, the capacity of parametric vibrotactile WM (vtWM) has not yet been established for supra-threshold, one-dimensional sensory vibrotactile frequencies. The present study extends the standard delayed match-to-sample vibrotactile discrimination task to determine the capacity of the vtWM and its cognitive mechanism. Here, by presenting subjects with 2 to 6 vibratory frequencies sequentially in each trial, the present study demonstrates that it is possible to retain about only two vibrotactile frequencies information in vtWM. The results also showed that the capacity of vtWM does not depend on whether sequentially presented vibrotactile frequencies are delivered to the same or to different fingers. At the same time, the rate of correct report depends on sequence length and when in the sequence the stimuli are presented, suggesting the dynamic updating of vtWM similar to that of visual WM.
Food vibrations: Asian spice sets lips trembling
Szechuan pepper, a widely used ingredient in the cuisine of many Asian countries, is known for the tingling sensation it induces on the tongue and lips. While the molecular mechanism by which Szechuan pepper activates tactile afferent fibres has been clarified, the tingling sensation itself has been less studied, and it remains unclear which fibres are responsible. We investigated the somatosensory perception of tingling in humans to identify the characteristic temporal frequency and compare this to the established selectivity of tactile afferents. Szechuan pepper was applied to the lower lip of participants. Participants judged the frequency of the tingling sensation on the lips by comparing this with the frequencies of mechanical vibrations applied to their right index finger. The perceived frequency of the tingling was consistently at around 50 Hz, corresponding to the range of tactile RA1 afferent fibres. Furthermore, adaptation of the RA1 channel by prolonged mechanical vibration reliably reduced the tingling frequency induced by Szechuan pepper, confirming that the frequency-specific tactile channel is shared between Szechuan pepper and mechanical vibration. Combining information about molecular reactions at peripheral receptors with quantitative psychophysical measurement may provide a unique method for characterizing unusual experiences by decomposing them into identifiable minimal units of sensation.
Perceptual Threshold Level for the Tactile Stimulation and Response Features of ERD/ERS-Based Specific Indices Upon Changes in High-Frequency Vibrations
This study was conducted to identify characteristics of the perceptual threshold level and electroencephalogram (EEG) responses to vibrotactile stimulations at various high frequencies, and to examine the possibility of distinguishing vibrotactile stimulations by frequency through such response characteristics. The vibrotactile stimulations of six frequencies (150, 200, 225, 250, 275 and 300 Hz) were exerted on the first joint of the right index finger. The perceptual threshold level was defined as the first minimum perceived intensity when the intensity stimulation was exerted step by step at each vibration frequency. EEG response characteristics were investigated by examining a single index corresponding to the peak or area of event-related desynchronization/synchronization (ERD/ERS) and seven specific indices derived by combining the single ERD/ERS indices. There was a significant difference in the perceptual threshold level across different frequencies. Specifically, the differences in vibration stimulus between 150 Hz and 200 Hz, and between 150 Hz and 225 Hz were significant. Of the EEG response characteristics, the single index of the peak or area of ERD/ERS did not show a significant difference by frequency. However, (ERS-ERD), ERD × (ERS-ERD), and ERS × (ERS-ERD) showed a significant difference between vibration stimulations at 150 Hz and 200 Hz, and between vibration stimulations at 150 Hz and 225 Hz, among the specific indices combined using the peak values of ERD/ERS. Furthermore, ERS × (ERS-ERD) showed a significant difference between 150 Hz and 225 Hz, and between 225 Hz and 275 Hz among the specific indices combined using the area of ERD/ERS. The perceptual threshold level and the specific indices of ERD/ERS suggested in the present study can be used as quantitative measurement indices to distinguish high-frequency vibration stimulation.
Comparison of Neural Activation Area in Primary Somatosensory Cortex and Brodmann Area 3 According to Finger and Phalange High-Frequency Vibration Stimulation
In this study, we measured neuronal activation in the primary somatosensory area (S1) and Brodmann area 3 (BA3) using 3T functional magnetic resonance imaging (fMRI) while presenting a 250-Hz high-frequency vibrational stimulus to each of three phalanges (distal, intermediate, and proximal) of four fingers of the right hand (index, middle, ring, and little). We compared the nerve activation area between each finger and each phalange. Ten healthy male college students (26.6 ± 2.5 years old) participated in this study. One session consisted of three blocks: a rest (30 s), stimulation (30 s), and response phase (9 s). In the rest phase, the vibrational stimulus was not presented. In the stimulation phase, the vibrational stimulation was presented at any one of the three phalanges of the selected finger. In the response phase, subjects were instructed to press a button corresponding to the phalange that they thought had received the vibration. The subtraction method was used to extract the activation area. The activation area in the S1 was the largest when the little finger was stimulated (for the finger comparison), and largest when the second phalange was stimulated (for the phalange comparison). The BA3 showed similar trends, and there was no statistically significant difference.
Enhanced neural phase locking through audio-tactile stimulation
Numerous studies have underscored the close relationship between the auditory and vibrotactile modality. For instance, in the peripheral structures of both modalities, afferent nerve fibers synchronize their activity to the external sensory stimulus, thereby providing a temporal code linked to pitch processing. The Frequency Following Response is a neurological measure that captures this phase locking activity in response to auditory stimuli. In our study, we investigated whether this neural signal is influenced by the simultaneous presentation of a vibrotactile stimulus. Accordingly, our findings revealed a significant increase in phase locking to the fundamental frequency of a speech stimulus, while no such effects were observed at harmonic frequencies. Since phase locking to the fundamental frequency has been associated with pitch perceptual capabilities, our results suggests that audio-tactile stimulation might improve pitch perception in human subjects.
Effects of vibrotactile feedback on postural sway in trans-femoral amputees: A wavelet analysis
Loss of somatosensory feedback after amputation inflicts a serious challenge to achieve postural stability. Improving motor skills by incorporating sensory feedback in rehabilitation protocols for persons with lower limb amputation has been gaining traction over time. However, the control mechanisms involved in this regarding time–frequency analysis have not been investigated yet. The purpose of this study was to explore the frequencies/time-scales responsible for postural stability in trans-femoral amputees with vibrotactile feedback. Center of Pressure (COP) signals were collected from 5 trans-femoral amputees and 10 healthy subjects during weight shifting balance tasks. A customized foot insole was used to estimate the COP for actuation of vibratory feedback. The evaluation of postural sway fluctuations by means of COP excursions with vibrotactile feedback was computed by wavelet transform method. Vibrotactile feedback was found to be effective in controlling low frequency postural sway in amputees. We found significantly higher energy (p = 0.004, 0.0007) at shorter time-scales (j = 6,7, freq. = 0.6–1.25 Hz) and lower energy (p = 0.0006) at longer time-scale (j = 10, freq. = 0.078 Hz) in amputees with vibrotactile feedback in comparison to healthy subjects using Coif 1 wavelet. We also found significant increase in energy (p = 0.003) during forward weight shifting with vibrotactile feedback in the sound limb of amputees in comparison to no feedback session at frequency/time-scales corresponding to somatosensory acuity (j = 6–8, freq. = 0.3–1.5 Hz) using Haar wavelet. These findings reflect the higher contribution of somatosensory receptors in amputees with vibrotactile feedback and may provide a better understanding of the mechanisms associated with standing balance in terms of time–frequency analysis.
Cortical spectral dynamics of vibrotactile frequency processing
While scientific research has extensively explored how the brain integrates touch and pain signals, the cerebral processing of specific vibrotactile frequencies remains poorly understood. This gap is particularly significant given clinical evidence that vibrotactile stimulation can reduce pain in both chronic pain patients and experimental settings. Our study investigated the cortical electrophysiological correlates of peripheral vibrotactile stimulation across different frequencies in healthy volunteers, with a focus on frequency-dependent patterns of neuronal activation. While electroencephalogram (EEG) was recorded, healthy participants received vibrotactile stimulation (high-frequency burst stimulation with different inter-burst intervals) to the left index fingertip at frequencies corresponding to established neural rhythms: delta (2 Hz), theta (6 Hz), alpha (12 Hz), beta (20 Hz), and gamma (40 Hz). We compared the EEG bandwidth activity between vibrotactile stimulation conditions relative to resting baseline. Our findings demonstrated that vibrotactile stimulation produces distinct frequency-dependent patterns of cortical activation. A key finding was that 6 Hz stimulation selectively enhanced theta power in the left prefrontal cortex - an electrophysiological signature previously linked to successful pain relief. These findings advance the understanding of the “spectrotopic” nature of vibrotactile frequency processing in the cortex and provide a mechanistic foundation for developing novel vibration-based therapies in the future.
Transparent Film-Type Vibrotactile Actuator Array and Its Haptic Rendering Using Beat Phenomenon
The most important thing in a thin and soft haptic module with an electroactive polymer actuator array is to increase its vibrotactile amplitude and to create a variety of vibrotactile sensations. In this paper, we introduce a thin film-type electroactive polymer actuator array capable of stimulating two types of human mechanoreceptors simultaneously, and we present a haptic rendering method that maximizes the actuators’ vibrational force without improving the array’s haptic performance. The increase in vibrational amplitude of the soft electroactive polymer actuator array is achieved by creating a beat vibration, which is an interference pattern of two vibrations with slightly different frequencies. The textures of a target object are translated into haptic stimuli using the proposed method. We conducted qualitative and quantitative experiments to evaluate the performance of the proposed rendering method. The results showed that this method not only amplifies the vibration’s amplitude but also haptically simulates various objects’ surfaces.