Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Source
    • Language
783 result(s) for "virus-host interactions"
Sort by:
Viruses.STRING: A Virus-Host Protein-Protein Interaction Database
As viruses continue to pose risks to global health, having a better understanding of virus–host protein–protein interactions aids in the development of treatments and vaccines. Here, we introduce Viruses.STRING, a protein–protein interaction database specifically catering to virus–virus and virus–host interactions. This database combines evidence from experimental and text-mining channels to provide combined probabilities for interactions between viral and host proteins. The database contains 177,425 interactions between 239 viruses and 319 hosts. The database is publicly available at viruses.string-db.org, and the interaction data can also be accessed through the latest version of the Cytoscape STRING app.
The SARS-CoV-2 Exerts a Distinctive Strategy for Interacting with the ACE2 Human Receptor
The COVID-19 disease has plagued over 200 countries with over three million cases and has resulted in over 200,000 deaths within 3 months. To gain insight into the high infection rate of the SARS-CoV-2 virus, we compare the interaction between the human ACE2 receptor and the SARS-CoV-2 spike protein with that of other pathogenic coronaviruses using molecular dynamics simulations. SARS-CoV, SARS-CoV-2, and HCoV-NL63 recognize ACE2 as the natural receptor but present a distinct binding interface to ACE2 and a different network of residue–residue contacts. SARS-CoV and SARS-CoV-2 have comparable binding affinities achieved by balancing energetics and dynamics. The SARS-CoV-2–ACE2 complex contains a higher number of contacts, a larger interface area, and decreased interface residue fluctuations relative to the SARS-CoV–ACE2 complex. These findings expose an exceptional evolutionary exploration exerted by coronaviruses toward host recognition. We postulate that the versatility of cell receptor binding strategies has immediate implications for therapeutic strategies.
Emerging Role of LY6E in Virus–Host Interactions
As a canonical lymphocyte antigen-6/urokinase-type plasminogen activator receptor Ly6/uPAR family protein, lymphocyte antigen 6 complex, locus E (LY6E), plays important roles in immunological regulation, T cell physiology, and oncogenesis. Emerging evidence indicates that LY6E is also involved in the modulation of viral infection. Consequently, viral infection and associated pathogenesis have been associated with altered LY6E gene expression. The interaction between viruses and the host immune system has offered insights into the biology of LY6E. In this review, we summarize the current knowledge of LY6E in the context of viral infection, particularly viral entry.
Common Nodes of Virus–Host Interaction Revealed Through an Integrated Network Analysis
Viruses are one of the major causes of acute and chronic infectious diseases and thus a major contributor to the global burden of disease. Several studies have shown how viruses have evolved to hijack basic cellular pathways and evade innate immune response by modulating key host factors and signaling pathways. A collective view of these multiple studies could advance our understanding of virus-host interactions and provide new therapeutic perspectives for the treatment of viral diseases. Here, we performed an integrative meta-analysis to elucidate the 17 different host-virus interactomes. Network and bioinformatics analyses showed how viruses with small genomes efficiently achieve the maximal effect by targeting multifunctional and highly connected host proteins with a high occurrence of disordered regions. We also identified the core cellular process subnetworks that are targeted by all the viruses. Integration with functional RNA interference (RNAi) datasets showed that a large proportion of the targets are required for viral replication. Furthermore, we performed an interactome-informed drug re-purposing screen and identified novel activities for broad-spectrum antiviral agents against hepatitis C virus and human metapneumovirus. Altogether, these orthogonal datasets could serve as a platform for hypothesis generation and follow-up studies to broaden our understanding of the viral evasion landscape.
Molecular basis for occlusion of the jeilongvirus receptor-binding site by the elongated C-terminus
The paramyxovirus receptor-binding protein (RBP) plays a primary role in determining cell and species tropism. Here, we study the RBPs of jeilongviruses, a group of paramyxoviruses that present a distinctive RBP that encodes an elongated C-terminal region. While the jeilongviral RBP structurally categorizes with paramyxoviral RBPs that interact with sialic acid during host-cell entry, the unusually long C-terminal domain was found to sterically occlude the associated binding site, suggesting that the molecule has developed strategies for autoinhibition of receptor interactions. These data expand our understanding of the architectural space occupied by paramyxoviral RBPs and the structural elaborations that may be incorporated into the paramyxovirus genome to modulate native functionality.
The archeoviruses
Since their discovery in the early 1980s, viruses that infect the third domain of life, the Archaea, have captivated our attention because of their virions' unusual morphologies and proteins, which lack homologues in extant databases. Moreover, the life cycles of these viruses have unusual features, as revealed by the recent discovery of a novel virus egress mechanism that involves the formation of specific pyramidal structures on the host cell surface. The available data elucidate the particular nature of the archaeal virosphere and shed light on questions concerning the origin and evolution of viruses and cells. In this review, we summarize the current knowledge of archeoviruses, their interaction with hosts and plasmids and their role in the evolution of life.
Diversified local CRISPR-Cas immunity to viruses of Sulfolobus islandicus
The population diversity and structure of CRISPR-Cas immunity provides key insights into virus–host interactions. Here, we examined two geographically and genetically distinct natural populations of the thermophilic crenarchaeon Sulfolobus islandicus and their interactions with Sulfolobus spindle-shaped viruses (SSVs) and S. islandicus rod-shaped viruses (SIRVs). We found that both virus families can be targeted with high population distributed immunity, whereby most immune strains target a virus using unique unshared CRISPR spacers. In Kamchatka, Russia, we observed high immunity to chronic SSVs that increases over time. In this context, we found that some SSVs had shortened genomes lacking genes that are highly targeted by the S. islandicus population, indicating a potential mechanism of immune evasion. By contrast, in Yellowstone National Park, we found high inter- and intra-strain immune diversity targeting lytic SIRVs and low immunity to chronic SSVs. In this population, we observed evidence of SIRVs evolving immunity through mutations concentrated in the first five bases of protospacers. These results indicate that diversity and structure of antiviral CRISPR-Cas immunity for a single microbial species can differ by both the population and virus type, and suggest that different virus families use different mechanisms to evade CRISPR-Cas immunity. This article is part of a discussion meeting issue ‘The ecology and evolution of prokaryotic CRISPR-Cas adaptive immune systems’.
Ion Channels as Therapeutic Targets for Viral Infections: Further Discoveries and Future Perspectives
Ion channels play key roles in almost all facets of cellular physiology and have emerged as key host cell factors for a multitude of viral infections. A catalogue of ion channel-blocking drugs have been shown to possess antiviral activity, some of which are in widespread human usage for ion channel-related diseases, highlighting new potential for drug repurposing. The emergence of ion channel–virus interactions has also revealed the intriguing possibility that channelopathies may explain some commonly observed virus induced pathologies. This field is rapidly evolving and an up-to-date summary of new discoveries can inform future perspectives. We herein discuss the role of ion channels during viral lifecycles, describe the recently identified ion channel drugs that can inhibit viral infections, and highlight the potential contribution of ion channels to virus-mediated disease.
Long Non-Coding RNAs: Emerging and Versatile Regulators in Host–Virus Interactions
Long non-coding RNAs (lncRNAs) are a class of non-protein-coding RNA molecules, which are involved in various biological processes, including chromatin modification, cell differentiation, pre-mRNA transcription and splicing, protein translation, etc. During the last decade, increasing evidence has suggested the involvement of lncRNAs in both immune and antiviral responses as positive or negative regulators. The immunity-associated lncRNAs modulate diverse and multilayered immune checkpoints, including activation or repression of innate immune signaling components, such as interleukin (IL)-8, IL-10, retinoic acid inducible gene I, toll-like receptors 1, 3, and 8, and interferon (IFN) regulatory factor 7, transcriptional regulation of various IFN-stimulated genes, and initiation of the cell apoptosis pathways. Additionally, some virus-encoded lncRNAs facilitate viral replication through individually or synergistically inhibiting the host antiviral responses or regulating multiple steps of the virus life cycle. Moreover, some viruses are reported to hijack host-encoded lncRNAs to establish persistent infections. Based on these amazing discoveries, lncRNAs are an emerging hotspot in host-virus interactions. In this review, we summarized the current findings of the host- or virus-encoded lncRNAs and the underlying mechanisms, discussed their impacts on immune responses and viral replication, and highlighted their critical roles in host-virus interactions.
Impact of Virus‐Mediated Modifications in Bacterial Communities on the Accumulation of Soil Organic Carbon
Microbial adaptations to resource availability are crucial to predict the responses of ecosystems to carbon (C) changes, yet viral roles in C cycling under varying levels of C remain elusive. Through metagenomic analysis of soils with contrasting C availability, a total of 24,789 viral contigs predominantly represent Microviridae and Siphoviridae. The soils with low C availability (straw removal) harbored 21% lysogenic viruses and enriched auxiliary metabolic genes (AMGs) related to C degradation (p < 0.05). Conversely, the soils with high C availability (straw returning) show 93% lytic viruses, stronger virus‐bacteria symbiosis, and numerous host functional genes related to C cycling and viral AMGs linked to C fixation (p < 0.05). Furthermore, these findings show that the addition of viruses boosted microbial metabolic efficiency and recalcitrant C accumulation (p < 0.05), with lytic activity accelerating organic C turnover via nutrient release and necromass formation. Overall, this study demonstrates viruses as key regulators of sustainable sequestration of C through host‐driven metabolic optimization. This study illustrates the impact of viruses on carbon cycling in soils with different availabilities of carbon. In conditions of low carbon availability, viruses adopt a lysogenic lifestyle, integrate into the host genomes and facilitate the degradation of carbon. Conversely, in high carbon availability soils, they shift to a lytic lifestyle and release nutrients that are metabolized by other microorganisms, thereby accelerating the turnover and accumulation of carbon.