Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
813
result(s) for
"visible light communication"
Sort by:
Analysis and Experimental Investigation of the Light Dimming Effect on Automotive Visible Light Communications Performances
by
Căilean, Alin-Mihai
,
Beguni, Cătălin
,
Avătămăniței, Sebastian-Andrei
in
inter-vehicle communications
,
light dimming
,
optical communications
2021
The use of Visible Light Communications (VLC) in vehicular applications has become a major research area due to its simplicity, high performance to cost ratio, and great deployment potential. In this context, this article provides one of the very few analyses and experimental evaluations concerning the integration of a light dimming function in vehicular VLC systems. For this purpose, a vehicle-to-vehicle VLC prototype has been implemented and used to evaluate the systems’ communication performances in light dimming conditions, while decreasing the duty cycle from 40% to 1%, and increasing the communication range from 1 to 40–50 m. The experimental results showed that in normal lighting conditions, the VLC technology can easily support low duty cycle light dimming for ranges up to 40 m, while maintaining a 10−6 BER. Nevertheless, in strong optical noise conditions, when the system reaches its SNR limit, the communication range can decrease by half, whereas the BER can increase by 2–4 orders of magnitude. This article provides consistent evidence concerning the high potential of the VLC technology to support inter-vehicle communication links, even in light dimming conditions.
Journal Article
Line-of-Sight Probability Analysis of Underground Mining Visible Light Communication Diversity Schemes Under Random Receiver Orientation
by
Dehghan Firoozabadi, Ali
,
Sánchez, Iván
,
Solís, Julián
in
Analysis
,
Communication
,
Communications equipment
2025
Visiblelightcommunication (VLC) is an emerging technology that offers an alternative to traditional wireless communications systems. However, the technology presents limitations related to the impact of the receiver’s orientation, which can significantly impact its performance. To address this issue, VLC systems use diversity schemes, such as transmitter and receiver diversity. In this paper, we derive an analytical expression for the probability of maintaining a line-of-sight (LoS) link in an underground mining visible light communication (UM-VLC) system with a receiver embedded in an object, such as a helmet, by considering user mobility. We show that the angle of incidence depends on the distance from the source and derive the probability accordingly for single-input single-output (SISO), multiple-input single-output (MISO), and single-input multiple-output cases (SIMO). Our results show that the analytical results fit with the simulated results. Furthermore, the resulting probabilities show that the angular position of the receiver significantly affects the channel’s quality, with the optimal position dependent on the field-of-view characteristics. These findings can provide an appropriate framework for receiver and transmitter diversity design through analytical expression.
Journal Article
An Improved Backoff Scheme and Its Performance Analysis for Full Duplex MAC Protocols in VLC Networks
2021
IEEE 802.15.7 Visible Light Communication (VLC) networks suffer from performance degradation caused by the hidden device collisions due to the directional transmission with narrow beamwidth. One of the solutions for mitigating the hidden device collisions is to employ a full-duplex transmission technique. As a side effect of the full-duplex transmission in the VLC networks, however, the data-packet discard due to the retransmission limitation occurs frequently in the networks. This paper proposes an improved backoff scheme and its performance analysis to suppress the packet discard. The proposed backoff scheme increases the Backoff Exponent (BE) and the Number of Backoff stage (NB) in IEEE 802.15.7 only when the data packet transmission fails. To evaluate the system performance theoretically, this paper also provides the Markov-chain model for channel access with the proposed scheme. The performance evaluations through simulation and theoretical analysis show the effectiveness of the proposed scheme.
Journal Article
A Novel Impulsive Noise Suppression and Data Recovery Method for ACO-OFDM-Based Hybrid PLC-VLC Systems
2024
Hybrid Power Line Communication (PLC)—Visible Light Communication (VLC) (HPV) systems are emerging as a cost-effective and efficient solution to enable high-speed communication. However, the random connection of electrical devices to the power line introduces Impulsive Noise (IN) in the PLC channel, which significantly degrades the Bit Error Rate (BER) of HPV systems. Existing studies have primarily focused on mitigating IN by setting the IN signals to either zero or a threshold value after the PLC stage. While previous studies have progressed in reducing noise, they have neglected the critical aspect of restoring the corrupted information signal that leads to data loss and increased BER. This study offers a novel Asymmetrical Recovery Filter (ARF) method to address the IN problem in HPV systems using Asymmetrically-Clipped Optical Orthogonal Frequency Division Multiplexing (ACO-OFDM). The ARF method not only suppresses the IN but also recovers impulsively corrupted data without causing signal loss, significantly enhancing the overall system BER performance. By leveraging ACO-OFDM’s naturally occurring different forms of identical signals, the ARF method avoids additional bandwidth usage during recovery and achieves this with a low-computational algorithm. The ARF method’s robustness is demonstrated through extensive simulations in both IN-free and IN-contaminated scenarios, outperforming existing signal lossy IN suppression methods.
Journal Article
Multi-User Visible Light Communication and Positioning System Based on Dual-Domain Multiplexing Scheme
2023
Visible light communication and positioning (VLCP) is a promising candidate for constructing a multi-functional wireless network with large-scale connectivity and centimeter-level positioning. However, there is still a lack of effective methods to offer simultaneous visible light communication (VLC) and visible light positioning (VLP) functions for multiple users. Thus, we propose a multi-user VLCP system based on a dual-domain multiplexing (DDM) scheme, where both the time and code resources are multiplexed to transmit VLCP signals for multiple users simultaneously. In the proposed system, the data of different users are distinguished by using code division multiplexing technology, while the VLCP signals transmitted from different LEDs are separated by adopting time division multiplexing technology. The performances, including bit-error rate and positioning error, are evaluated through both simulation and experimentation to verify the feasibility of the proposed multi-user VLCP system. In the experiment, a VLCP system with four LED transmitters was able to simultaneously support low-speed VLC with free error and accurate VLP with a 2 cm precision for eight users. This offers an effective solution to support a large number of users with simultaneous VLC and VLP functions in the future multi-functional wireless network.
Journal Article
Statistical Modeling of Wall Roughness and Its Influence on NLOS VLC Channels in Underground Mining
2025
This study investigates the impact of wall roughness on the performance of the Non-Line-of-Sight (NLOS) component in Visible Light Communication (VLC) systems designed for underground mining environments, adhering to safety and communication standards such as IEC 60079-28(intrinsic safety in explosive atmospheres) and IEEE 802.15.7 (VLC parameters). Using probabilistic models aligned with the ITU-R P.1238 propagation guidelines, the research evaluates how wall materials (e.g., coal, shale, limestone) and their irregular geometries, characterized by surface roughness profiles compliant with ISO 8503-2,influence reflection coefficients (0.05–0.85 range), incidence angles (0°–90°), and irradiance angles (5°–180°), which are critical for signal propagation. Simulation scenarios, parameterized with material reflectivity data from ASTM E423, explore the effects of statistical distributions (uniform, normal with μ = 0.3, σ = 0.2; exponential λ = 2; gamma α = 0.5, β = 0.2) on power distribution, channel impulse response, and reflection coefficients. The results indicate variations in maximum received power: a decrease of 80% for uniform distribution, an increase of 150% for exponential distribution, and a 100% increase for gamma distribution in reflection conditions. Under incidence and irradiance conditions, uniform distribution exhibited a 158.62% increase, whereas exponential distribution and gamma distribution experienced reductions of 72.22% and 7.04%, respectively. These variations align with IEC 62973-1 EMI limits and emphasize the role of roughness (Ra = 0.8–12.5 μm per ASME B46.1).
Journal Article
A Wavelength-Dependent Visible Light Communication Channel Model for Underground Environments and Its Performance Using a Color-Shift Keying Modulation Scheme
by
Sandoval, Jorge
,
Azurdia-Meza, Cesar
,
Carrera, Diego
in
Algorithms
,
Bit error rate
,
Coal mining
2023
Reliable wireless communications are crucial for ensuring workers’ safety in underground tunnels and mines. Visible light communications (VLC) have been proposed as auxiliary systems for short-range wireless communications in underground environments due to their seamless availability, immunity to electromagnetic interference, and illumination capabilities. Although multiple VLC channel models have been proposed for underground mines (UM) so far, none of these models have considered the wavelength dependence of the underground mining VLC channel (UM-VLC). In this paper, we propose a single-input, single-output (SISO), wavelength-dependent UM-VLC channel model considering the wavelength dependence of the light source, reflections, light scattering, and the attenuation due to dust and the photodetector. Since wavelength dependence allows us to model VLC systems more accurately with color-based modulation, such as color-shift keying (CSK), we also propose a wavelength-dependent CSK-based UM-VLC channel model. We define a simulation scenario in an underground mine roadway and calculate the received power, channel impulse response (CIR), signal-to-noise ratio (SNR), signal-to-interference ratio (SIR), root mean square (RMS) delay, and bit error rate (BER). For comparison, we also calculate these parameters for a monochromatic state-of-the-art UM-VLC channel and use it as a reference channel. We find that the inclusion of wavelength-dependency in CSK-based UM-VLC systems plays a significant role in their performance, introducing color distortion that the color calibration algorithm defined in the IEEE 802.15.7 VLC standard finds harder to revert than the linear color distortion induced by monochromatic CSK channels.
Journal Article
Single-Source VLCP System Based on Solar Cell Array Receiver and Right-Angled Tetrahedron Trilateration VLP (RATT-VLP) Algorithm
by
Yu, Changyuan
,
Xie, Dawei
,
Liu, Zhongxu
in
Algorithms
,
Binary phase shift keying
,
Cell interactions
2024
A significant deployment limitation for visible light communication and positioning (VLCP) systems in energy- and light-source-restricted scenarios is the reliance of photodetectors (PDs) on external power supplies, compromising sustainability and complicating receiver charging. Solar cells (SCs), capable of harvesting and converting environmental light into electrical energy, offer a promising alternative. Consequently, we first propose an indoor VLCP system that utilizes an SC array as the receiver, alongside a right-angled tetrahedron trilateration visible light positioning (RATT-VLP) algorithm based on a single light source and multiple receivers. The proposed system uses an SC array in place of PDs, utilizing binary phase shift keying (BPSK) signals for simultaneous communication and positioning. In experiments, we verified the system’s error-free communication rate of 1.21 kbps and average positioning error of 3.40 cm in a 30 cm × 30 cm area, indicating that the system can simultaneously satisfy low-speed communication and accurate positioning applications. This provides a viable foundation for further research on SC-based VLCP systems, facilitating potential applications in environments like underwater wireless communication, positioning, and storage tank inspection.
Journal Article
New indoor navigation system for visually impaired people using visible light communication
by
Haruyama, Shinichiro
,
Nakajima, Madoka
in
Communication systems
,
Communications Engineering
,
Engineering
2013
In this study, we propose an indoor navigation system that utilizes visible light communication technology, which employs LED lights and a geomagnetic correction method, aimed at supporting visually impaired people who travel indoors. To verify the effectiveness of this system, we conducted an experiment targeting visually impaired people. Although acquiring accurate positional information and detecting directions indoors is difficult, we confirmed that using this system, accurate positional information and travel direction can be obtained utilizing visible light communication technology, which employs LED lights, and correcting the values of the geomagnetic sensor integrated in a smartphone.
Journal Article
Visible Light Communication: A System Perspective—Overview and Challenges
by
Rehman, Saeed
,
Ullah, Shakir
,
Yongchareon, Sira
in
LED communication
,
optical communication
,
Review
2019
Visible light communication (VLC) is a new paradigm that could revolutionise the future of wireless communication. In VLC, information is transmitted through modulating the visible light spectrum (400–700 nm) that is used for illumination. Analytical and experimental work has shown the potential of VLC to provide high-speed data communication with the added advantage of improved energy efficiency and communication security/privacy. VLC is still in the early phase of research. There are fewer review articles published on this topic mostly addressing the physical layer research. Unlike other reviews, this article gives a system prespective of VLC along with the survey on existing literature and potential challenges toward the implementation and integration of VLC.
Journal Article