Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Language
      Language
      Clear All
      Language
  • Subject
      Subject
      Clear All
      Subject
  • Item Type
      Item Type
      Clear All
      Item Type
  • Discipline
      Discipline
      Clear All
      Discipline
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
2 result(s) for "vlpC gene"
Sort by:
CRISPR-like sequences in Helicobacter pylori and application in genotyping
Background Many bacteria and archaea possess a defense system called clustered regularly interspaced short palindromic repeats (CRISPR) associated proteins (CRISPR-Cas system) against invaders such as phages or plasmids. This system has not been demonstrated in Helicobacter pylori . The numbers of spacer in CRISPR array differ among bacterial strains and can be used as a genetic marker for bacterial typing. Results A total of 36 H. pylori isolates were collected from patients in three hospitals located in the central (PBH) and southern (SKH) regions of Thailand. It is of interest that CRISPR-like sequences of this bacterium were detected in vlpC encoded for VacA-like protein C. Virulence genes were investigated and the most pathogenic genotype ( cagA vacA s1m1) was detected in 17 out of 29 (58.6%) isolates from PBH and 5 out of 7 (71.4%) from SKH. vapD gene was identified in each one isolate from PBH and SKH. CRISPR-like sequences and virulence genes of 20 isolates of H. pylori obtained in this study were analyzed and CRISPR-virulence typing was constructed and compared to profiles obtained by the random amplification of polymorphic DNA (RAPD) technique. The discriminatory power (DI) of CRISPR-virulence typing was not different from RAPD typing. Conclusion CRISPR-virulence typing in H. pylori is easy and reliable for epidemiology and can be used for inter-laboratory interpretation.
Detection and variability analyses of CRISPR-like loci in the H. pylori genome
Helicobacter pylori is a human pathogenic bacterium with a high genomic plasticity. Although the functional CRISPR-Cas system has not been found in its genome, CRISPR-like loci have been recently identified. In this work, 53 genomes from different geographical areas are analyzed for the search and analysis of variability of this type of structure. We confirm the presence of a locus that was previously described in the VlpC gene in al lgenomes, and we characterize new CRISPR-like loci in other genomic locations. By studying the variability and gene location of these loci, the evolution and the possible roles of these sequences are discussed. Additionally, the usefulness of this type of sequences as a phylogenetic marker has been demonstrated, associating the different strains by geographical area.