Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
259
result(s) for
"vorticity fronts"
Sort by:
Vortex Stability in the Thermal Quasi-Geostrophic Dynamics
2025
The stability of a circular vortex is studied in the thermal quasi-geostrophic (TQG) model. Several radial distributions of vorticity and buoyancy (temperature) are considered for the mean flow. First, the linear stability of these vortices is addressed. The linear problem is solved exactly for a simple flow, and two stability criteria are then derived for general mean flows. Then, the growth rate and most unstable wavenumbers of normal-mode perturbations are computed numerically for Gaussian and cubic exponential vortices, both for elliptical and higher mode perturbations. In TQG, contrary to usual QG, short waves can be linearly unstable on shallow vorticity profiles. Linearly, both stratification and bottom topography (under specific conditions) have a stabilizing role. In a second step, we use a numerical model of the nonlinear TQG equations. With a Gaussian vortex, we show the growth of small-scale perturbations during the vortex instability, as predicted by the linear analysis. In particular, for an unstable vortex with an elliptical perturbation, the final tripolar vortices can have a turbulent peripheral structure, when the ratio of mean buoyancy to mean velocity is large enough. The frontogenetic tendency indicates how small-scale features detach from the vortex core towards its periphery, and thus feed the turbulent peripheral vorticity. We confirm that stratification and topography have a stabilizing influence as shown by the linear theory. Then, by varying the vortex and perturbation characteristics, we classify the various possible nonlinear regimes. The numerical simulations show that the influence of the growing small-scale perturbations is to weaken the peripheral vortices formed by the instability, and by this, to stabilize the whole vortex. A finite radius of deformation and/or bottom topography also stabilize the vortex as predicted by linear theory. An extension of this work to stratified flows is finally recommended.
Journal Article
Hydrological extremes in the Aksu-Tarim River Basin: Mid-latitude dynamics
2016
Analyses of precipitation (1961–2010) from 39 meteorological stations in the Tarim River Basin revealed a trend from dryer towards wetter conditions induced by an increase of the number of wet extremes. A first (1961–1986) and second (1987–2010) period are the basis for a dynamical analysis of changing drought and wetness extremes which are closely related to cyclonic activity over the European continent and circulation anomalies in the Northern Hemisphere mid-latitudes. Wave train, cyclone tracks, water flux and potential vorticity (PV) front analysis of the wet and dry months show the following result: (1) The extreme wet and dry cases in winter and summer are characterized by distinguished wave train patterns upstream of the Tarim River Basin. All wave trains originate in the Atlantic–European sector pointing towards wave train dynamics as one possible mechanism underlying the connection patterns observed. (2) The selected extreme cases show that exceptional precipitation events can be connected to characteristic cyclone tracks and a PV front in the upper troposphere even if cyclone tracks never cross the Tarim Basin. Extremely wet winters are characterized by cyclone tracks close to the western and northern boundary of the Tarim Basin whereas, during extremely dry winters, such cyclone tracks are absent. Wet summers are characterized by long-lived cyclonic anomalies at the north western corner of the Tarim River Basin [see also (3)]. During dry summers such anomalies are absent. (3) On a more local level the hydrological extreme events are linked to special dynamical structures of the upper tropospheric PV front. In winter strong (extreme) precipitation is connected to a strong non-linear wave development or a wave-breaking event over the Tarim River Basin. Together with non-linear wave development moisture and precipitation areas are advected towards the Tarim River Basin. In dry winters the upper tropospheric PV front is much more zonally oriented and wave-breaking is less frequent. Strong precipitation events are connected to strong breaking events and to the formation of long-lived nearly stationary cyclones over or north of the Tarim River Basin during extremely wet summer months.
Journal Article
Observed Atlantification of the Barents Sea Causes the Polar Front to Limit the Expansion of Winter Sea Ice
by
Barton, Benjamin I.
,
Lique, Camille
,
Lenn, Yueng-Djern
in
Annual variations
,
Antarctic front
,
Arctic circulation
2018
Barents Sea Water (BSW) is formed from Atlantic Water that is cooled through atmospheric heat loss and freshened through seasonal sea ice melt. In the eastern Barents Sea, the BSW and fresher, colder Arctic Water meet at the surface along the Polar Front (PF). Despite its importance in setting the northern limit of BSW ventilation, the PF has been poorly documented, mostly eluding detection by observational surveys that avoid seasonal sea ice. In this study, satellite sea surface temperature (SST) observations are used in addition to a temperature and salinity climatology to examine the location and structure of the PF and characterize its variability over the period 1985–2016. It is shown that the PF is independent of the position of the sea ice edge and is a shelf slope current constrained by potential vorticity. The main driver of interannual variability in SST is the variability of the Atlantic Water temperature, which has significantly increased since 2005. The SST gradient associated with the PF has also increased after 2005, preventing sea ice from extending south of the front during winter in recent years. The disappearance of fresh, seasonal sea ice melt south of the PF has led to a significant increase in BSW salinity and density. As BSW forms the majority of Arctic Intermediate Water, changes to BSW properties may have far-reaching impacts for Arctic Ocean circulation and climate.
Journal Article
The Role of Curvature in Modifying Frontal Instabilities. Part I: Review of Theory and Presentation of a Nondimensional Instability Criterion
by
Gula, Jonathan
,
Buckingham, Christian E.
,
Carton, Xavier
in
Absolute vorticity
,
Accretion disks
,
Angular momentum
2021
In this study, we examine the role of curvature in modifying frontal stability. We first evaluate the classical criterion that the Coriolis parameter f multiplied by the Ertel potential vorticity (PV) q is positive for stable flow and that instability is possible when this quantity is negative. The first portion of this statement can be deduced from Ertel’s PV theorem, assuming an initially positive fq . Moreover, the full statement is implicit in the governing equation for the mean geostrophic flow, as the discriminant, fq , changes sign. However, for curved fronts in cyclogeostrophic or gradient wind balance (GWB), an additional term enters the discriminant owing to conservation of absolute angular momentum L . The resulting expression, (1 + Cu) fq < 0 or Lq < 0, where Cu is a nondimensional number quantifying the curvature of the flow, simultaneously generalizes Rayleigh’s criterion by accounting for baroclinicity and Hoskins’s criterion by accounting for centrifugal effects. In particular, changes in the front’s vertical shear and stratification owing to curvature tilt the absolute vorticity vector away from its thermal wind state; in an effort to conserve the product of absolute angular momentum and Ertel PV, this modifies gradient Rossby and Richardson numbers permitted for stable flow. This forms the basis of a nondimensional expression that is valid for inviscid, curved fronts on the f plane, which can be used to classify frontal instabilities. In conclusion, the classical criterion fq < 0 should be replaced by the more general criterion for studies involving gravitational, centrifugal, and symmetric instabilities at curved density fronts. In Part II of the study, we examine interesting outcomes of the criterion applied to low-Richardson-number fronts and vortices in GWB.
Journal Article
The British–Baikal Corridor
2019
The British–Baikal Corridor (BBC) pattern, a new teleconnection along the summertime upper-tropospheric polar front jet (PFJ), is investigated based on observational and reanalysis datasets. The BBC pattern consists of four geographically fixed centers over the west of the British Isles, the Baltic Sea, western Siberia, and Lake Baikal, respectively. It features a zonally oriented and meridionally confined wavelike structure with a zonal wavenumber 5, and it influences the climate along its route significantly. The BBC pattern forms from the trapped effect of the PFJ waveguide that is characterized by a strong meridional gradient of stratification.As a preferred dynamical mode inherent in the PFJ, it is maintained through the baroclinic energy conversion from the basic flow and the feedback forcing of high-frequency transient eddies. Meanwhile, its geographical location is determined by the barotropic energy conversion, which is sensitive to the configuration of the basic flow. The interannual variability of the BBC pattern is dominated by atmospheric internal dynamics considering its loose relation with immediate atmospheric external forcing. Further analyses suggest that the BBC pattern is excited by the active multiscale interactions among the climatological mean flow, the low-frequency flow, and the synoptic-scale transient eddies in the exit region of the North Atlantic jet, which may also determine the preferential upstream forcing region and anchor the BBC pattern geographically. Budget analyses on vorticity, temperature, and water vapor are performed to interpret the physical nature of the BBC pattern. The possible linkage to the North Atlantic Oscillation is also discussed.
Journal Article
Submesoscale Fronts and Their Dynamical Processes Associated with Symmetric Instability in the Northwest Pacific Subtropical Ocean
2021
Submesoscale density fronts and the associated processes of frontogenesis and symmetric instability (SI) are investigated in the northwest Pacific subtropical countercurrent (STCC) system by a high-resolution simulation and diagnostic analysis. Both satellite observations and realistic simulation show active surface fronts with a horizontal scale of ~20 km in the STCC upper ocean. Frontogenesis-induced buoyancy advection is detected to rapidly sharpen these density fronts. The direct straining effect of larger-scale geostrophic flows is a primary influence on the buoyancy-gradient frontogenetic tendency and frontal baroclinic potential vorticity (PV) enhancement. The enhanced lateral buoyancy gradients in conjunction with atmospheric forced surface buoyancy loss can produce a negative Ertel PV and trigger frontal SI in the STCC region. Up to 30% of the mixed layer (ML) inside a typical eddy has negative PV in the high-resolution simulation. As a result, the cross-front ageostrophic secondary circulations tend to restratify the surface boundary layer and induce a large vertical velocity reaching ~100 m day −1 , substantially facilitating the vertical communication of the STCC system. At the same time, the SI is identified to be responsible for a forward cascade of geostrophic kinetic energy in the STCC region, despite the coexistence of ML eddies and SI in the deep winter ML. Therefore, these active density fronts and their SI-associated submesoscale processes play important roles in the enhanced vertical exchanges (e.g., heat, nutrients, and carbon) and energy transfer to smaller scales in the eddy-active STCC upper ocean, as well as triggering phytoplankton blooms at the periphery of eddies.
Journal Article
Indirect effect of diabatic heating on Mei-yu frontogenesis
by
Deng, Yi
,
Lin, Yanluan
,
Cui, Chunguang
in
air temperature
,
Anomalies
,
Atmospheric circulation
2022
Mei-yu fronts are accompanied with the formation of frontal clouds. In addition to its direct effect on Mei-yu fronts through the modification of atmospheric temperature, diabatic heating related to clouds formation also influences frontogenesis indirectly by changing local atmospheric circulation. To quantify such indirect effects, piecewise potential vorticity (PV) inversion is adopted to decompose the process of deformation frontogenesis into several parts associated with distinct PV anomalies. The balanced flow associated with the interior-level diabatic PV anomaly emerges as the most stable and important contributor to the total deformation frontogenesis with the effect of local diabatic PV anomaly in the frontal zone outweighing the effect of remote diabatic PV anomaly. Lower-boundary thermal anomaly (i.e., surface cooling associated with frontal clouds formation) and mean flow provide weak negative and positive contributions to the deformation frontogenesis, respectively. The balanced flow associated with the upper-level PV perturbations is weak at lower-levels, especially in the vicinity of the front zone and thus has negligible contributions to the Mei-yu frontogenesis. The indirect effect of diabatic heating on Mei-yu frontogenesis is generally weaker in magnitude compared to the direct effect of temperature modification as well as the impact of moisture depletion that is also tied to clouds formation. The results presented here add further evidences about the importance of cloud feedback to the evolution of Mei-yu fronts and suggest the necessity of improved model representations of cloud processes in achieving a better simulation and prediction of Mei-yu rainfall.
Journal Article
The Scale and Activity of Symmetric Instability Estimated from a Global Submesoscale-Permitting Ocean Model
2021
Symmetric instability (SI) extracts kinetic energy from fronts in the surface mixed layer (SML), potentially affecting the SML structure and dynamics. Here, a global submesoscale-permitting ocean model named MITgcm LLC4320 simulation is used to examine the Stone linear prediction of the maximum SI scale to estimate grid spacings needed to begin resolving SI. Furthermore, potential effects of SI on the usable wind work are estimated roughly: this estimate of SI “activity” is useful for assessing if these modes should be resolved or parameterized. The maximum SI scale varies by latitude with median values from 568 to 23 m. Strong seasonality is observed in the SI scale and activity. The median scale in winter is 188 m globally, 2.5 times of that of summer (75 m). SI is more active in winter: 15% of the time compared with 6% in summer. The strongest SI activity is found in the western Pacific, western Atlantic, and Southern Oceans. The required grid spacings for a global model to begin resolving SI eddies in the SML are 24 m (50% of regions resolved) and 7.9 m (90%) in winter, decreasing to 9.4 m (50%) and 3.6 m (90%) in summer. It is also estimated that SI may reduce usable wind work by an upper bound of 0.83 mW m −2 globally, or 5% of the global magnitude. The sensitivity of these estimates to empirical thresholds is provided in the text.
Journal Article
Effects of the Submesoscale on the Potential Vorticity Budget of Ocean Mode Waters
by
Gula, Jonathan
,
Wenegrat, Jacob O.
,
Thomas, Leif N.
in
Aerodynamics
,
Air-sea flux
,
Biogeochemistry
2018
Nonconservative processes change the potential vorticity (PV) of the upper ocean and, later, through the subduction of surface waters into the interior, affect the general ocean circulation. Here we focus on how boundary layer turbulence, in the presence of submesoscale horizontal buoyancy gradients, generates a source of potential vorticity at the ocean surface through a balance known as the turbulent thermal wind. This source of PV injection at the submesoscale can be of similar magnitude to PV fluxes from the wind and surface buoyancy fluxes, and hence can lead to a net injection of PV onto outcropped isopycnals even during periods of surface buoyancy loss. The significance of these dynamics is illustrated using a high-resolution realistic model of the North Atlantic Subtropical Mode Water (Eighteen Degree Water), where it is demonstrated that injection of PV at the submesoscale reduces the rate of mode water PV removal by a factor of ~2 and shortens the annual period of mode water formation by ~3 weeks, relative to air–sea fluxes alone. Submesoscale processes thus provide a direct link between small-scale boundary layer turbulence and the gyre-scale circulation, through their effect on mode water formation, with implications for understanding the variability and biogeochemical properties of ocean mode waters globally.
Journal Article
Observing and quantifying ocean flow properties using drifters with drogues at different depths
2021
This paper presents analyses of drifters with drogues at different depths – 1, 10, 30, 50 m – that were deployed in the Mediterranean Sea to investigate frontal subduction and upwelling. Drifter trajectories were used to estimate divergence, vorticity, vertical velocity, and finite-size Lyapunov exponents (FTLEs), and to investigate the balance of terms in the vorticity equation. The divergence and vorticity are O( f ) and change sign along trajectories. Vertical velocity is O(1 mm/s), increases with depth, indicates predominant upwelling with isolated downwelling events, and sometimes changes sign between 1 and 50 m. Vortex stretching is one of, but not the only, significant term in the vorticity balance. 2D FTLEs are 2 × 10 −5 1/s after 1 day, twice larger than in a 400-m-resolution numerical model. 3D FTLEs are 50% larger than 2D FTLEs and are dominated by the vertical shear of horizontal velocity. Bootstrapping suggests uncertainty levels of ~10% of the time-mean absolute values for divergence and vorticity. Analysis of simulated drifters in a model suggests that drifter-based estimates of divergence and vorticity are close to the Eulerian model estimates, except when drifters get aligned into long filaments. Drifter-based vertical velocity is close to the Eulerian model estimates at 1 m but differs at deeper depths. The errors in the vertical velocity are largely due to the lateral separation between drifters at different depths, and partially due to only measuring at 4 depths. Overall, this paper demonstrates how drifters, heretofore restricted to 2D near-surface observations, can be used to learn about 3D flow properties throughout the upper layer of the water column.
Journal Article