Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Series Title
      Series Title
      Clear All
      Series Title
  • Reading Level
      Reading Level
      Clear All
      Reading Level
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Content Type
    • Item Type
    • Degree Type
    • Is Full-Text Available
    • Subject
    • Country Of Publication
    • Publisher
    • Source
    • Granting Institution
    • Target Audience
    • Donor
    • Language
    • Place of Publication
    • Contributors
    • Location
554,265 result(s) for "waste management"
Sort by:
An overview of the environmental pollution and health effects associated with waste landfilling and open dumping
Landfilling is one of the most common waste management methods employed in all countries alike, irrespective of their developmental status. The most commonly used types of landfills are (a) municipal solid waste landfill, (b) industrial waste landfill, and (c) hazardous waste landfill. There is, also, an emerging landfill type called “green waste landfill” that is, occasionally, being used. Most landfills, including those discussed in this review article, are controlled and engineered establishments, wherein the waste ought to abide with certain regulations regarding their quality and quantity. However, illegal and uncontrolled “landfills” (mostly known as open dumpsites) are, unfortunately, prevalent in many developing countries. Due to the widespread use of landfilling, even as of today, it is imperative to examine any environmental- and/or health-related issues that have emerged. The present study seeks to determine the environmental pollution and health effects associated with waste landfilling by adopting a desk review design. It is revealed that landfilling is associated with various environmental pollution problems, namely, (a) underground water pollution due to the leaching of organic, inorganic, and various other substances of concern (SoC) contained in the waste, (b) air pollution due to suspension of particles, (c) odor pollution from the deposition of municipal solid waste (MSW), and (d) even marine pollution from any potential run-offs. Furthermore, health impacts may occur through the pollution of the underground water and the emissions of gases, leading to carcinogenic and non-carcinogenic effects of the exposed population living in their vicinity. Graphical abstract
Hazmat removal worker
\"Readers will learn what it takes to succeed as a hazmat removal worker. The book also explains the necessary educational steps, useful character traits, and daily job tasks related to this career, in the framework of the STEAM (Science, Technology, Engineering, Art, and Math) movement. Photos, a glossary, and additional resources are included.\"-- Provided by publisher.
Municipal solid waste management in China: a comparative analysis
This paper illustrates an overview of the past and present MSWM strategies in China. A comparison is made with MSWM in China, and other developed and developing countries to identify and analyze the problems of existing MSWM, and evaluate some effective suggestion to overcome the limitations. Rapid urbanization and economic growth are the main factors of increasing MSW generation in China. The generating MSW has 55.86 % food waste with high moisture contain due to unavailable source separation. Chinese MSWM is dominated by 60.16 % landfilling, whereas incineration, untreated discharge, and other treatments are 29.84, 8.21, and 1.79 %, respectively. In 2014, a total of 604 sanitary landfills, 188 incineration plants, and 26 other units were used for MSWM. With the magnitude of timing, the increasing rate of incineration unit and disposal capacity is higher than the landfill. In 2004–2014, the disposal capacity of landfill and incineration is increased from 68.89 to 107.44 and 4.49 to 53.3 million tons, respectively. However, the heating value in the majority of Chinese incineration plants is 3000–6700 kJ/kg and the inappropriate leachate treatment can be found in 47 % landfill sites. A proper taxation system for MSW disposal is not fully implemented in China, which has a negative impact on overall MSW recycling. From the comparative study of MSWM, it is revealed that the source separation MSW collection, high energy recovery from incineration plants, appropriate leachate treatment, effective landfill location and management, increase waste recycling and proper taxation system for MSW disposal are essential to improve MSWM in China.
Environmental resource management and the nexus approach : managing water, soil, and waste in the context of global change
This title elaborates how water, soil, and waste may be managed in a nexus and how this approach may help combat global change. In addition to providing a brief account on nexus thinking and how it may help us tackle issues important to the world community such as food security, it presents the environmental resource perspective of three main aspects of global change: climate change, urbanisation, and population growth.
Global perspective of municipal solid waste and landfill leachate: generation, composition, eco-toxicity, and sustainable management strategies
Globally, more than 2 billion tonnes of municipal solid waste (MSW) are generated each year, with that amount anticipated to reach around 3.5 billion tonnes by 2050. On a worldwide scale, food and green waste contribute the major proportion of MSW, which accounts for 44% of global waste, followed by recycling waste (38%), which includes plastic, glass, cardboard, and paper, and 18% of other materials. Population growth, urbanization, and industrial expansion are the principal drivers of the ever-increasing production of MSW across the world. Among the different practices employed for the management of waste, landfill disposal has been the most popular and easiest method across the world. Waste management practices differ significantly depending on the income level. In high-income nations, only 2% of waste is dumped, whereas in low-income nations, approximately 93% of waste is burned or dumped. However, the unscientific disposal of waste in landfills causes the generation of gases, heat, and leachate and results in a variety of ecotoxicological problems, including global warming, water pollution, fire hazards, and health effects that are hazardous to both the environment and public health. Therefore, sustainable management of MSW and landfill leachate is critical, necessitating the use of more advanced techniques to lessen waste production and maximize recycling to assure environmental sustainability. The present review provides an updated overview of the global perspective of municipal waste generation, composition, landfill heat and leachate formation, and ecotoxicological effects, and also discusses integrated-waste management approaches for the sustainable management of municipal waste and landfill leachate.
A critical review on various feedstocks as sustainable substrates for biosurfactants production: a way towards cleaner production
The quest for a chemical surfactant substitute has been fuelled by increased environmental awareness. The benefits that biosurfactants present like biodegradability, and biocompatibility over their chemical and synthetic counterparts has contributed immensely to their popularity and use in various industries such as petrochemicals, mining, metallurgy, agrochemicals, fertilizers, beverages, cosmetics, etc. With the growing demand for biosurfactants, researchers are looking for low-cost waste materials to use them as substrates, which will lower the manufacturing costs while providing waste management services as an add-on benefit. The use of low-cost substrates will significantly reduce the cost of producing biosurfactants. This paper discusses the use of various feedstocks in the production of biosurfactants, which not only reduces the cost of waste treatment but also provides an opportunity to profit from the sale of the biosurfactant. Furthermore, it includes state-of-the-art information about employing municipal solid waste as a sustainable feedstock for biosurfactant production, which has not been simultaneously covered in many published literatures on biosurfactant production from different feedstocks. It also addresses the myriad of other issues associated with the processing of biosurfactants, as well as the methods used to address these issues and perspectives, which will move society towards cleaner production.
Global initiatives for waste reduction and cutting food loss
\"This book examines the methods of global initiatives for reducing waste reduction and cutting food loss. It also explores the idea of effective management of food waste\"-- Provided by publisher.
Assessment of inorganic solid waste management techniques using full consistency and extended MABAC method
Population and industrial growth have spiked product consumption, which in turn have caused an abrupt rise in municipal solid waste (MSW) production. Due to the lack of resources allocated to waste management, municipal inorganic solid waste (ISW) has increased exponentially, posing a significant strain on the environment and health. To mitigate these issues, sustainable waste management strategies need to be implemented to reduce environmental impacts and improve waste collection and disposal efficiency. The objective of our work was to analyse and identify the most effective techniques for disposing of ISW in India by employing multi-criteria decision-making (MCDM). This technique entails selecting the most suitable alternative based on a variety of competing and interactive criteria. A fusion decision model named the FULL COnsistency Method (FUCOM) and Multi-Attributive Border Approximation area Comparison (MABAC) based on the interval-valued q-rung orthopair fuzzy (IV q-ROF) was developed. Finally, a comparative analysis was performed to demonstrate the system’s robustness.