Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
320
result(s) for
"wet digestion method"
Sort by:
Detection of nanoplastics in food by asymmetric flow field-flow fractionation coupled to multi-angle light scattering: possibilities, challenges and analytical limitations
2018
We tested the suitability of asymmetric flow field-flow fractionation (AF4) coupled to multi-angle light scattering (MALS) for detection of nanoplastics in fish. A homogenized fish sample was spiked with 100 nm polystyrene nanoparticles (PSNPs) (1.3 mg/g fish). Two sample preparation strategies were tested: acid digestion and enzymatic digestion with proteinase K. Both procedures were found suitable for degradation of the organic matrix. However, acid digestion resulted in large PSNPs aggregates/agglomerates (> 1 μm). The presence of large particulates was not observed after enzymatic digestion, and consequently it was chosen as a sample preparation method. The results demonstrated that it was possible to use AF4 for separating the PSNPs from the digested fish and to determine their size by MALS. The PSNPs could be easily detected by following their light scattering (LS) signal with a limit of detection of 52 μg/g fish. The AF4-MALS method could also be exploited for another type of nanoplastics in solution, namely polyethylene (PE). However, it was not possible to detect the PE particles in fish, due to the presence of an elevated LS background. Our results demonstrate that an analytical method developed for a certain type of nanoplastics may not be directly applicable to other types of nanoplastics and may require further adjustment. This work describes for the first time the detection of nanoplastics in a food matrix by AF4-MALS. Despite the current limitations, this is a promising methodology for detecting nanoplastics in food and in experimental studies (e.g., toxicity tests, uptake studies).
Journal Article
Heavy metal pollution of street dust in the largest city of Mexico, sources and health risk assessment
by
Gutiérrez-Ruiz, Margarita
,
Ceniceros-Gómez, Agueda E.
,
Cejudo, Rubén
in
Acid digestion
,
Atmospheric particulates
,
Atmospheric Protection/Air Quality Control/Air Pollution
2021
In large industrialized cities, tons of particles containing heavy metals are released into the environment and accumulate on street surfaces. Such particles cause a potential risk to human health due to their composition and size. The heavy metal contamination levels, main emission sources, and human health risks were identified in 482 samples of street dust. Heavy metal concentrations were obtained by microwave-assisted acid digestion and ICP-OES. The results indicated that street dust in Mexico City is contaminated mainly with Pb, Zn, and Cu, according to the contamination factor and the geoaccumulation index. The pollution load index of the street dust was made with the concentrations of Pb, Zn, Cu, Cr, and Ni. The main sources of Pb, Zn, Cu, and Cr are anthropic, probably due to vehicular traffic. The highest levels of Cr and Pb in urban dust represent a health risk for children. Contamination limits were proposed for heavy metals in street dust of Mexico City. These limits might be useful to generate and apply public policies to decrease anthropic emissions of the heavy metals studied, particularly Cr and Pb.
Journal Article
Ingestion of Microplastics by Zooplankton in the Northeast Pacific Ocean
2015
Microplastics are increasingly recognized as being widespread in the world’s oceans, but relatively little is known about ingestion by marine biota. In light of the potential for microplastic fibers and fragments to be taken up by small marine organisms, we examined plastic ingestion by two foundation species near the base of North Pacific marine food webs, the calanoid copepod
Neocalanus cristatus
and the euphausiid
Euphausia pacifia
. We developed an acid digestion method to assess plastic ingestion by individual zooplankton and detected microplastics in both species. Encounter rates resulting from ingestion were 1 particle/every 34 copepods and 1/every 17 euphausiids (euphausiids > copepods;
p
= 0.01). Consistent with differences in the size selection of food between these two zooplankton species, the ingested particle size was greater in euphausiids (816 ± 108 μm) than in copepods (556 ± 149 μm) (
p
= 0.014). The contribution of ingested microplastic fibres to total plastic decreased with distance from shore in euphausiids (
r
2
= 70,
p
= 0.003), corresponding to patterns in our previous observations of microplastics in seawater samples from the same locations. This first evidence of microplastic ingestion by marine zooplankton indicate that species at lower trophic levels of the marine food web are mistaking plastic for food, which raises fundamental questions about potential risks to higher trophic level species. One concern is risk to salmon: We estimate that consumption of microplastic-containing zooplankton will lead to the ingestion of 2–7 microplastic particles/day by individual juvenile salmon in coastal British Columbia, and ≤91 microplastic particles/day in returning adults.
Journal Article
Prediction of Lignin Contents from Infrared Spectroscopy: Chemical Digestion and Lignin/Biomass Ratios of Cryptomeria japonica
2019
A method for the high-throughput analysis of the relative lignin contents of Cryptomeria japonica samples over a wide concentration range (3–73%), independent of the type of chemical pretreatment, was developed by using Fourier transform infrared spectroscopy. First, the assignments of the infrared absorbance related to lignin were reviewed. Then, various chemical treatments, including alkaline, acid, and hydrothermal processes, and a sodium chlorite oxidation treatment, were performed to prepare samples containing a wide range of different lignin contents. Principal component analysis indicated high variability among the chemical treatments in terms of the corresponding lignin contents as well as the resulting changes in the chemical structure of hemicellulose; this conclusion was supported by the loading vectors. The intensity of the key band of lignin at 1508 cm−1 was calculated using the absorbance at 2900 cm−1 as a reference; a reliable calibration curve with an R2 of 0.968 was obtained independent of the chemical treatment performed. This simple and rapid method for determining the lignin content is expected to be widely applicable for optimizing bioethanol production, as well as monitoring biomass degradation processes.
Journal Article
Recyclable, Strong Thermosets and Organogels via Paraformaldehyde Condensation with Diamines
by
Jones, Gavin O.
,
McCloskey, Bryan D.
,
Alabdulrahman, Abdullah M. S.
in
carbon fibers
,
Carbon nanotubes
,
Composite materials
2014
Nitrogen-based thermoset polymers have many industrial applications (for example, in composites), but are difficult to recycle or rework. We report a simple one-pot, low-temperature polycondensation between paraformaldehyde and 4,4′-oxydianiline (ODA) that forms hemiaminal dynamic covalent networks (HDCNs), which can further cyclize at high temperatures, producing poly(hexahydrotriazine)s (PHTs). Both materials are strong thermosetting polymers, and the PHTs exhibited very high Young's moduli (up to ∼14.0 gigapascals and up to 20 gigapascals when reinforced with surface-treated carbon nanotubes), excellent solvent resistance, and resistance to environmental stress cracking. However, both HDCNs and PHTs could be digested at low pH (<2) to recover the bisaniline monomers. By simply using different diamine monomers, the HDCN- and PHT-forming reactions afford extremely versatile materials platforms. For example, when poly(ethylene glycol) (PEG) diamine monomers were used to form HDCNs, elastic organogels formed that exhibited self-healing properties.
Journal Article
Microplastic Ingestion by Wild and Cultured Manila Clams (Venerupis philippinarum) from Baynes Sound, British Columbia
2016
Microplastics, plastic particles <5 mm, are an emerging concern in aquatic ecosystems. Because microplastics are small, they are available to many filter-feeding organisms, which can then be consumed by higher trophic level organisms, including humans. This study documents the quantity of microplastics present in wild and cultured Manila clams (
Venerupis philippinarum
). Three active shellfish farms and three reference beaches (i.e., non-shellfish farm sites) in Baynes Sound, British Columbia were chosen to examine the microplastic concentrations in wild and cultured Manila clams. Microplastics were isolated using a nitric acid digestion technique and enumerated from 54 clams (27 farmed and 27 non-farmed). Qualitative attributes, such as colour and microplastic type (fiber, fragment, or film) also were recorded. There was no significant difference (
F
= 1.29;
df
= 1,4;
P
= 0.289) between microplastic concentrations in cultured and wild clams. Microplastic concentrations ranged from 0.07 to 5.47 particles/g (from reference beach and shellfish farm clams, respectively). Fibers were the dominant microplastic (90 %); colourless and dark gray fibers were the most common colours observed (36 and 26 %, respectively). Although this indicates that microplastics are definitely present in seafood consumed by humans, shellfish aquaculture operations do not appear to be increasing microplastic concentrations in farmed clams in this region.
Journal Article
Monitoring the spatial distribution pattern according to urban land use and health risk assessment on potential toxic metal contamination via street dust in Ankara, Türkiye
by
Isinkaralar, Oznur
,
Bayraktar, Emine Pirinç
,
Isinkaralar, Kaan
in
Acid digestion
,
Air pollution
,
Anthropogenic factors
2023
The urbanization processes with growing vehicle numbers cause heavy metal pollution in street dust, and high populations in metropolitan cities are exposed to pollutants. This paper aims to monitor the spatial distribution of heavy metals and evaluate the concentrations via health risk assessment of HMs (Cu, Ni, Cd, Co, Pb, and Zn) that expose the inhabitants to health hazards. According to the results of the current study, sixty street dust samples were applied to the acid digestion technique and quantification by inductively coupled plasma-mass spectrometry (ICP-MS). The spatial distribution of the selected heavy metals in the street dust was investigated using the spatial analysis tool in ArcGIS 10.0 according to population density and land use. In the present study, we used hazard index and cancer risk methods to estimate the public health risk of the pollutants exposed to street dust in Ankara. The concentrations range of the elements in street dust over the study area ranged from 3.34–4.50, 31.69–42.87, 16.09–21.54, 42.85–57.55, 0.00–3.51, and 23.03–30.79, respectively. The overall decreasing order of mean concentration of metals was observed as follows: Pb > Cu > Ni > Co > Cd > Zn. Vehicle traffic and industrial activities seem to be the most critical anthropogenic sources responsible for dust pollution in the study area. The risk assessment of Pb and Ni exposure was the highest, and the hazard index values were 2.42E + 00 and 2.28E + 00 mg/kg/day for children. However, the effect on adults was 2.62E-01 and 2.37E-02 mg/kg/day, followed by inhalation and dermal contact with street dust was almost negligible. The decreasing concentration is modeled spatially along the western development corridor of the city. The risk to public health is high in areas with high densities close to the city center and the main artery.
Journal Article
Starch Extraction Methods in Tubers and Roots: A Systematic Review
by
Dorantes-Fuertes, María-Guadalupe
,
Martínez-Castellanos, Gustavo
,
Meléndez-Armenta, Roberto Ángel
in
agronomy
,
Alkaline digestion
,
Cellulase
2024
Starch extraction from tubers and roots has long been an essential process, playing a crucial role in diverse industries ranging from alimentary to pharmacology. This review explores the different methods employed in starch extraction, including traditional techniques and the most innovative mechanical strategies. The methods show a good improvement in many aspects, such as an improvement in the efficiency of the process and an improvement in the yield, showing a value of 10.0–65.0% depending on the starch source. On the other hand, solvents such as NaOH are used in many mechanical processes for alkaline digestion to improve the extraction time. Ethanol and K2S2O5 concentrations of 0.5% and 0.8% were used to prevent oxidation and modify some properties of the extracted starch. The use of many solvents has improved the optimization of the processes, providing the final extracted starch with more advantages and better quality. However, using enzymes such as cellulase in new and innovative ways has provided more advantages and a better efficiency and yield than the other methods. Each method has its advantages and challenges, highlighting the importance of understanding the diversity of different approaches and their impact on the yield, sustainability, environmental considerations, and quality of the extracted starch. As the world looks for more ecological approaches, this review shows the importance of critically evaluating the yield, efficiency, and environmental implications of the extraction methods, providing us with more ways of evaluating the methods used for starch extraction. The ecological impact is a crucial point when evaluating the innovation of a new extraction process, which is why methods such as ultrasound and pulsed electric-field-assisted techniques have been proposed. These methods have been presented as sustainable techniques called green technologies, offering more approaches and different advantages than the other methods. This review intends to investigate the complexities and considerations of starch extraction, providing a solid basis for decision-making regarding starch extraction. In a time where sustainability and product quality are crucial elements of industrial strategy formulation, an in-depth understanding of these methods becomes imperative to the development of responsible practices and efficiency in starch extraction.
Journal Article
Health risk assessment of arsenic and heavy metals (Cd, Cu, Co, Pb, and Sn) through consumption of caviar of Acipenser persicus from Southern Caspian Sea
by
Sobhanardakani, Soheil
,
Tayebi, Lima
,
Hosseini, Seyed Vali
in
Acid digestion
,
Acipenser persicus
,
Adult
2018
In the current study contents of As, Cd, Cu, Co, Pb, and Sn were determined in the caviar of Persian sturgeon collected from Southern Caspian Sea sampling site. After acid digestion of caviar specimens, the concentrations of elements determined using ICP-OES. The results showed that the mean concentrations (mg kg
−1
) of elements in caviar samples were 0.01 for As, 0.05 for Cd, 1.42 for Cu, 0.01 for Co, 0.01 for Pb, and 0.28 for Sn and for all the elements are significantly lower than the adverse level for the human consumption. Also, health risk index (HRI) values were within the safe limits (HRI < 1). Therefore, there is no potential health risk to adults and children via consumption of caviar. Due to the discharge of hazardous chemicals into the marine ecosystems especially the Caspian Sea, residue analysis of pollutants in the sea foods is recommended.
Journal Article
Quantitative and qualitative impacts of nitric acid digestion on microplastic identification via FTIR and Raman spectroscopy, implications for environmental samples
2023
Quantification and characterization of microplastics, synthetic polymers less than 5 mm in diameter, requires extraction methods that can reduce non-plastic debris without loss or alteration of the polymers. Nitric acid has been used to extract plastic particles from zooplankton and other biota because it completely digests tissue and exoskeletons, thus reducing interferences. While the impact of acid digestion protocols on several polymers has been demonstrated, advice for quantifying microplastic and interpreting their spectra following nitric acid digestion is lacking. Fourier transform infrared (FTIR) and/or Raman spectroscopy was performed on plastics from > 50 common consumer products (including a variety of textiles) pre- and post-nitric acid treatment. The percent match and assigned polymer were tabulated to compare the accuracy of spectral identification before and after nitric acid digestion via two open spectral analysis software. Nylon-66, polyoxymethylene, polyurethane, polyisoprene, nitrile rubber, and polymethyl methacrylate had ≥ 90% mass loss in nitric acid. Other less-impacted polymers changed color, morphology, and/or size following digestion. Thus, using nitric acid digestion for microplastic extraction can impact our understanding of the particle sizes and morphologies ingested in situ
.
Spectral analysis results were compiled to understand how often (1) the best-hit matches were correct (30–60% of spectra), (2) the best-hit matches exceeding the (arbitrary) threshold of 65% match were correct (53–78% of spectra), and (3) the best-hit matches for anthropogenic polymers were incorrectly identified as natural polymers (12–15% of spectra). Based on these results, advice is provided on how nitric acid digestion can impact microplastics as well as spectral interpretation.
Journal Article