Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Source
    • Language
1,160 result(s) for "whale optimization algorithm"
Sort by:
Improved Whale Optimization Algorithm for Transient Response, Robustness, and Stability Enhancement of an Automatic Voltage Regulator System
The proportional integral derivative (PID) controller is one of the most robust and simplest configuration controllers used for industrial applications. However, its performance purely depends on the tuning of its proportional (KP), integral (KI) and derivative (KD) gains. Therefore, a proper combination of these gains is primarily required to achieve an optimal performance of the PID controllers. The conventional methods of PID tuning such as Cohen-Coon (CC) and Ziegler–Nichols (ZN) generate unwanted overshoots and long-lasting oscillations in the system. Owing to the mentioned problems, this paper attempts to achieve an optimized combination of PID controller gains by exploiting the intelligence of the whale optimization algorithm (WOA) and one of its recently introduced modified versions called improved whale optimization algorithm (IWOA) in an automatic voltage regulator (AVR) system. The stability of the IWOA-AVR system was studied by assessing its root-locus, bode maps, and pole/zero plots. The performance superiority of the presented IWOA-AVR design over eight of the recently explored AI-based approaches was validated through a comprehensive comparative analysis based on the most important transient response and stability metrics. Finally, to assess the robustness of the optimized AVR system, robustness analysis was conducted by analyzing the system response during the variation in the time constants of the generator, exciter, and amplifier from −50% to 50% range. The results of the study prove the superiority of the proposed IWOA-based AVR system in terms of transient response and stability metrics.
Binary Whale Optimization Algorithm for Dimensionality Reduction
Feature selection (FS) was regarded as a global combinatorial optimization problem. FS is used to simplify and enhance the quality of high-dimensional datasets by selecting prominent features and removing irrelevant and redundant data to provide good classification results. FS aims to reduce the dimensionality and improve the classification accuracy that is generally utilized with great importance in different fields such as pattern classification, data analysis, and data mining applications. The main problem is to find the best subset that contains the representative information of all the data. In order to overcome this problem, two binary variants of the whale optimization algorithm (WOA) are proposed, called bWOA-S and bWOA-V. They are used to decrease the complexity and increase the performance of a system by selecting significant features for classification purposes. The first bWOA-S version uses the Sigmoid transfer function to convert WOA values to binary ones, whereas the second bWOA-V version uses a hyperbolic tangent transfer function. Furthermore, the two binary variants introduced here were compared with three famous and well-known optimization algorithms in this domain, such as Particle Swarm Optimizer (PSO), three variants of binary ant lion (bALO1, bALO2, and bALO3), binary Dragonfly Algorithm (bDA) as well as the original WOA, over 24 benchmark datasets from the UCI repository. Eventually, a non-parametric test called Wilcoxon’s rank-sum was carried out at 5% significance to prove the powerfulness and effectiveness of the two proposed algorithms when compared with other algorithms statistically. The qualitative and quantitative results showed that the two introduced variants in the FS domain are able to minimize the selected feature number as well as maximize the accuracy of the classification within an appropriate time.
An Optimal Node Localization in WSN Based on Siege Whale Optimization Algorithm
Localization or positioning scheme in Wireless sensor networks (WSNs) is one of the most challenging and fundamental operations in various monitoring or tracking applications because the network deploys a large area and allocates the acquired location information to unknown devices. The metaheuristic approach is one of the most advantageous ways to deal with this challenging issue and overcome the disadvantages of the traditional methods that often suffer from computational time problems and small network deployment scale. This study proposes an enhanced whale optimization algorithm that is an advanced metaheuristic algorithm based on the siege mechanism (SWOA) for node localization in WSN. The objective function is modeled while communicating on localized nodes, considering variables like delay, path loss, energy, and received signal strength. The localization approach also assigns the discovered location data to unidentified devices with the modeled objective function by applying the SWOA algorithm. The experimental analysis is carried out to demonstrate the efficiency of the designed localization scheme in terms of various metrics, e.g., localization errors rate, converges rate, and executed time. Compared experimental-result shows that the SWOA offers the applicability of the developed model for WSN to perform the localization scheme with excellent quality. Significantly, the error and convergence values achieved by the SWOA are less location error, faster in convergence and executed time than the others compared to at least a reduced 1.5% to 4.7% error rate, and quicker by at least 4% and 2% in convergence and executed time, respectively for the experimental scenarios.
An innovative approach for QoS-aware web service composition using whale optimization algorithm
With the proliferation of services and the vast amount of data produced by the Internet, numerous services with comparable functionalities but varying Quality of Service (QoS) attributes are potential candidates for meeting user needs. Consequently, the selection of the most suitable services has become increasingly challenging. To address this issue, a synthesis of multiple services is conducted through a composition process to create more sophisticated services. In recent years, there has been a growing interest in QoS uncertainty, given its potential impact on determining an optimal composite service, where each service is characterized by multiple QoS properties (e.g., response time and cost) that are frequently subject to change primarily due to environmental factors. Here, we introduce a novel approach that depends on the Multi-Agent Whale Optimization Algorithm (MA-WOA) for web service composition problem. Our proposed algorithm utilizes a multi-agent system for the representation and control of potential services, utilizing MA-WOA to identify the optimal composition that meets the user’s requirements. It accounts for multiple quality factors and employs a weighted aggregation function to combine them into a cohesive fitness function. The efficiency of the suggested method is evaluated using a real and artificial web service composition dataset (comprising a total of 52,000 web services), with results indicating its superiority over other state-of-the-art methods in terms of composition quality and computational effectiveness. Therefore, the proposed strategy presents a feasible and effective solution to the web service composition challenge, representing a significant advancement in the field of service-oriented computing.
Multi Objective Optimization of Electric Vehicle Charging Strategy Considering User Selectivity
Electric vehicles (EVs) are increasing in number every year, and large-scale uncontrolled EV charging can impose significant load pressure on the power grid (PG), affecting its stability and economy. This paper proposes an EV charging strategy that considers user selectivity. The user’s selection strategy includes options for fast and slow charging types, as well as the choice of whether to comply with grid-controlled charging. Charging types are selected based on the ability to reach the desired state of charge (SOC), while compliance with grid-controlled charging is determined by comparing the unit charging cost (CC). An objective function is established to minimize the peak valley load difference (PVLD) rate of PGs and users’ CC. To achieve this, an improved non-dominated sorting whale optimization algorithm (INSWOA) is proposed which initializes the population through logistic mapping, introduces nonlinear convergence factors for position updates, and uses adaptive inertia weights to improve population diversity, enhance global optimization ability, reduce premature convergence, and improve solution accuracy. Finally, simulating distribution networks in a certain region, the results obtained from the INSWOA were compared with those from the non-dominated sorting whale optimization algorithm (NSWOA) and other algorithms. The comparisons demonstrated that the INSWOA significantly reduced the PVLD rate of the PG load and users’ CCs, highlighting its high practical value.
WPO: A Whale Particle Optimization Algorithm
Metaheuristic algorithms are novel optimization algorithms often inspired by nature. In recent years, scholars have proposed various metaheuristic algorithms, such as the genetic algorithm (GA), artificial bee colony, particle swarm optimization (PSO), crow search algorithm, and whale optimization algorithm (WOA), to solve optimization problems. Among these, PSO is the most commonly used. However, different algorithms have different limitations. For example, PSO is prone to premature convergence and falls into a local optimum, whereas GA coding is difficult and uncertain. Therefore, an algorithm that can increase the computing power and particle diversity can address the limitations of existing algorithms. Therefore, this paper proposes a hybrid algorithm, called whale particle optimization (WPO), that combines the advantages of the WOA and PSO to increase particle diversity and can jump out of the local optimum. The performance of the WPO algorithm was evaluated using four optimization problems: function evaluation, image clustering, permutation flow shop scheduling, and data clustering. The test data were selected from real-life situations. The results demonstrate that the proposed algorithm competes well against existing algorithms.
An Improved Whale Optimization Algorithm for Web Service Composition
In the current circumstance, the Web Service Composition (WSC) was introduced to address complex user needs concerning the Quality of Services (QoS). In the WSC problem, the user needs are divided into a set of tasks. The corresponding web services are retrieved from the web services discovery according to the functionality of each task, and have different non-functional constraints, such as QoS. The WSC problem is a multi-objective optimization problem and is classified as an NP-hard problem. The whale optimization algorithm (WOA) is proven to solve complex multi-objective optimization problems, and it has the advantage of easy implementation with few control parameters. In this work, we contribute to improving the WOA algorithm, where different strategies are introduced to enhance its performance and address its shortcomings, namely its slow convergence speed, which produces low solution accuracy for the WSC problem. The proposed algorithm is named Improved Whale Optimization Algorithm (IWOA) and has three different strategies to enhance the performance of the WOA. Firstly, the Sine chaos theory is proposed to initiate the WOA’s population and enhance the initialization diversity. Secondly, a Lévy flight mechanism is proposed to enhance the exploitation and exploration of WOA by maintaining the whales’ diversity. Further, a neighborhood search mechanism is introduced to address the trade-off between exploration and exploitation searching mechanisms. Different experiments are conducted with datasets on 12 different scales (small, medium, and large), and the proposed algorithm is compared with standard WOA and five state-of-the-art swarm-based algorithms on 30 different independent runs. Furthermore, four evaluation criteria are used to validate the comparison: the average fitness value, best fitness values, standard deviation, and average execution time. The results show that the IWOA enhanced the WOA algorithm’s performance, where it got the better average and best fitness values with a low variation on all datasets. However, it ranked second regarding average execution time after the WOA, and sometimes third after the WOA and OABC, which is reasonable because of the proposed strategies.
Adaptive IIR model identification using chaotic opposition-based whale optimization algorithm
Infinite impulse response (IIR) filter system recognition is a serious issue nowadays as it has many applications on a diversity of platforms. The whale optimization algorithm (WOA) is a novel nature-motivated population-based meta-heuristic algorithm where the hunting techniques of humpback whales are implemented to solve many optimization problems. But the main disadvantage of WOA is its stagnant convergence rate. As the algorithm is population based, the initialization process is very important in finding the best result and to enhance the convergence rate. In this paper, a novel chaotic oppositional-based initialization process is nominated before the start of conventional WOA to improve the performance. To effectively cover the entire search region, a chaotic-based logistic population map consists of both the actual numbers and its corresponding opposite numbers are incorporated into this opposition-based initialization process. When checked out with some classic model of examples, simulation performance authorizes chaotic oppositional-based whale optimization algorithm (COWOA) as a more convenient contender compared to the other evolutionary techniques in terms of accuracy and convergence speed. Convergence profile and mean square error are the performance specifications that are needed to inspect the performance of our recommended algorithm.
Investigating dam reservoir operation optimization using metaheuristic algorithms
The optimization of dam reservoir operations is of the utmost importance, as operators strive to maximize revenue while minimizing expenses, risks, and deficiencies. Metaheuristics have recently been investigated extensively by researchers in the management of dam reservoirs. But the animal-concept-based metaheuristic algorithm with Lévy flight integration approach has not been used at Karun-4. This paper investigates the optimization of dam reservoir operation using three unexplored metaheuristics: the whale optimization algorithm (WOA), the Levy-flight WOA (LFWOA), and the Harris hawks optimization algorithm (HHO). Utilizing a time series data set on the hydrological and climatic characteristics of the Karun-4 hydroelectric reservoir in Iran, an analysis was conducted. The objective functions and constraints of the Karun-4 hydropower reservoir were examined throughout the optimization procedure. HHO produces the best optimal value, the least-worst optimal value, the best average optimal value, and the best standard deviation (SD) with scores of 0.000026, 0.001735, 0.000520, and 0.000614, respectively, resulting in the best overall ranking mean (RM) with a score of 1.5 at Karun-4. Throughout the duration of the test, the optimized trends of water release and water storage indicate that HHO is superior to the other investigated metaheuristics. WOA has the best correlation of variation (CV) with a score of 0.090195, while LFWOA has the best convergence rate (3.208 s) and best CPU time. Overall, it can be concluded that HHO has the most desirable performance in terms of optimization. Yet, current studies indicate that both WOA and LFWOA generate positive and comparable outcomes.
Optimum parameters extraction of proton exchange membrane fuel cells using Fractional‐Order Whale Optimization Algorithm
This study proposes a novel metaheuristic‐based technique for optimum parameters' estimation of the proton exchange membrane fuel cells (PEMFCs). To provide better results with more reliability and accuracy, a Fractional Order‐based design of the Whale Optimizer Algorithm (FO‐WOA) is designed. A validation test showed that the proposed method provides a good trade‐off between accuracy and convergence speed. Performing the algorithm for multiple independent runs also shows that the proposed method delivers reliable results toward some other comparative metaheuristic algorithms. This algorithm is then used for the minimization of the sum of square deviation between the experimental voltage‐current polarization and the optimal achieved results by the model based on FO‐WOA. The method is validated by considering two practical case studies, which are the Nexa PEMFC and 250 W PEM system, and its achievements are put in comparison with some approaches to indicate the higher effectiveness of the proposed method toward the others. The experimental results on the Nexa PEMFC indicate that the proposed FO‐WOA‐based method with 12 sum square errors (SSE) provided the minimum error toward the other. Also, the experiments on the 250 W PEM Stack indicated that for 250 W PEM Stack with 3/5 bar and 80°C, the proposed method with 0.01 SSE provides the fittest profile with the experimental data, and finally, the experiments on the same stack with 3/5 bar and 80°C showed the higher accuracy of the proposed method with the least SSE value (0.16) toward the others. New metaheuristic‐based technique for parameters' estimation of proton exchange membrane fuel cells. A Fractional Order‐based design of the Whale Optimizer Algorithm (FO‐WOA) is designed for optimization. FO‐WOA is used for minimization of the error between the experimental and model outputs. The method is validated by considering two practical case studies. The results are compared with some other approaches.