Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Source
    • Language
2,906 result(s) for "white adipose tissue"
Sort by:
The different shades of fat
Our understanding of adipose tissue biology has progressed rapidly since the turn of the century. White adipose tissue has emerged as a key determinant of healthy metabolism and metabolic dysfunction. This realization is paralleled only by the confirmation that adult humans have heat-dissipating brown adipose tissue, an important contributor to energy balance and a possible therapeutic target for the treatment of metabolic disease. We propose that the development of successful strategies to target brown and white adipose tissues will depend on investigations that elucidate their developmental origins and cell-type-specific functional regulators.
Adipose-derived circulating miRNAs regulate gene expression in other tissues
Adipose tissue is a major site of energy storage and has a role in the regulation of metabolism through the release of adipokines. Here we show that mice with an adipose-tissue-specific knockout of the microRNA (miRNA)-processing enzyme Dicer (ADicerKO), as well as humans with lipodystrophy, exhibit a substantial decrease in levels of circulating exosomal miRNAs. Transplantation of both white and brown adipose tissue—brown especially—into ADicerKO mice restores the level of numerous circulating miRNAs that are associated with an improvement in glucose tolerance and a reduction in hepatic Fgf21 mRNA and circulating FGF21. This gene regulation can be mimicked by the administration of normal, but not ADicerKO, serum exosomes. Expression of a human-specific miRNA in the brown adipose tissue of one mouse in vivo can also regulate its 3′ UTR reporter in the liver of another mouse through serum exosomal transfer. Thus, adipose tissue constitutes an important source of circulating exosomal miRNAs, which can regulate gene expression in distant tissues and thereby serve as a previously undescribed form of adipokine. Adipose tissue is a major source of circulating exosomal miRNAs, which contribute to the regulation of gene expression in distant tissues and organs. A novel form of adipokine Adipose tissue is best known as a site of energy storage, but it also has a role in the regulation of metabolism through the release of cell signalling molecules called adipokines. Here Ronald Kahn and colleagues show that adipose tissue constitutes a major source of circulating exosomal microRNAs (miRNAs), and that these miRNAs are able to regulate gene expression in distant tissues. The miRNAs can therefore be considered to be a form of adipokine.
Accumulation of succinate controls activation of adipose tissue thermogenesis
Thermogenesis by brown and beige adipose tissue, which requires activation by external stimuli, can counter metabolic disease 1 . Thermogenic respiration is initiated by adipocyte lipolysis through cyclic AMP–protein kinase A signalling; this pathway has been subject to longstanding clinical investigation 2 – 4 . Here we apply a comparative metabolomics approach and identify an independent metabolic pathway that controls acute activation of adipose tissue thermogenesis in vivo. We show that substantial and selective accumulation of the tricarboxylic acid cycle intermediate succinate is a metabolic signature of adipose tissue thermogenesis upon activation by exposure to cold. Succinate accumulation occurs independently of adrenergic signalling, and is sufficient to elevate thermogenic respiration in brown adipocytes. Selective accumulation of succinate may be driven by a capacity of brown adipocytes to sequester elevated circulating succinate. Furthermore, brown adipose tissue thermogenesis can be initiated by systemic administration of succinate in mice. Succinate from the extracellular milieu is rapidly metabolized by brown adipocytes, and its oxidation by succinate dehydrogenase is required for activation of thermogenesis. We identify a mechanism whereby succinate dehydrogenase-mediated oxidation of succinate initiates production of reactive oxygen species, and drives thermogenic respiration, whereas inhibition of succinate dehydrogenase supresses thermogenesis. Finally, we show that pharmacological elevation of circulating succinate drives UCP1-dependent thermogenesis by brown adipose tissue in vivo, which stimulates robust protection against diet-induced obesity and improves glucose tolerance. These findings reveal an unexpected mechanism for control of thermogenesis, using succinate as a systemically-derived thermogenic molecule. A comparative metabolomics approach is used to identify succinate as a key activator of thermogenesis in brown adipose tissue.
BMP4-mediated brown fat-like changes in white adipose tissue alter glucose and energy homeostasis
Expression of bone morphogenetic protein 4 (BMP4) in adipocytes of white adipose tissue (WAT) produces “white adipocytes” with characteristics of brown fat and leads to a reduction of adiposity and its metabolic complications. Although BMP4 is known to induce commitment of pluripotent stem cells to the adipocyte lineage by producing cells that possess the characteristics of preadipocytes, its effects on the mature white adipocyte phenotype and function were unknown. Forced expression of a BMP4 transgene in white adipocytes of mice gives rise to reduced WAT mass and white adipocyte size along with an increased number of a white adipocyte cell types with brown adipocyte characteristics comparable to those of beige or brite adipocytes. These changes correlate closely with increased energy expenditure, improved insulin sensitivity, and protection against diet-induced obesity and diabetes. Conversely, BMP4-deficient mice exhibit enlarged white adipocyte morphology and impaired insulin sensitivity. We identify peroxisome proliferator-activated receptor gamma coactivator 1-α (PGC1α) as the target of BMP signaling required for these brown fat-like changes in WAT. This effect of BMP4 on WAT appears to extend to human adipose tissue, because the level of expression of BMP4 in WAT correlates inversely with body mass index. These findings provide a genetic and metabolic basis for BMP4’s role in altering insulin sensitivity by affecting WAT development.
Dichotomous effects of VEGF-A on adipose tissue dysfunction
Obese fat pads are frequently undervascularized and hypoxic, leading to increased fibrosis, inflammation, and ultimately insulin resistance. We hypothesized that VEGF-A–induced stimulation of angiogenesis enables sustained and sufficient oxygen and nutrient exchange during fat mass expansion, thereby improving adipose tissue function. Using a doxycycline (Dox)-inducible adipocyte-specific VEGF-A overexpression model, we demonstrate that the local up-regulation of VEGF-A in adipocytes improves vascularization and causes a \"browning\" of white adipose tissue (AT), with massive up-regulation of UCP1 and PGC1α. This is associated with an increase in energy expenditure and resistance to high fat diet-mediated metabolic insults. Similarly, inhibition of VEGF-A–induced activation of VEGFR2 during the early phase of high fat diet-induced weight gain, causes aggravated systemic insulin resistance. However, the same VEGF-A–VEGFR2 blockade in ob/ob mice leads to a reduced body-weight gain, an improvement in insulin sensitivity, a decrease in inflammatory factors, and increased incidence of adipocyte death. The consequences of modulation of angiogenic activity are therefore context dependent. Proangiogenic activity during adipose tissue expansion is beneficial, associated with potent protective effects on metabolism, whereas antiangiogenic action in the context of preexisting adipose tissue dysfunction leads to improvements in metabolism, an effect likely mediated by the ablation of dysfunctional proinflammatory adipocytes.
Tracking adipogenesis during white adipose tissue development, expansion and regeneration
Qiong Wang and colleagues introduce the AdipoChaser mouse, an in vivo tool to track the formation and turnover of adipocytes. They use this inducible mature adipocyte lineage-tracing system to monitor adipogenesis and follow the formation of white and beige adipocytes under different conditions: high-fat diet, cold exposure and β-adrenergic stimulation. The system produced some interesting findings on in vivo adipogenesis, including that beige adipocytes differentiate de novo from specialized precursors rather than by transdifferentiation of mature white adipocytes. White adipose tissue displays high plasticity. We developed a system for the inducible, permanent labeling of mature adipocytes that we called the AdipoChaser mouse. We monitored adipogenesis during development, high-fat diet (HFD) feeding and cold exposure. During cold-induced 'browning' of subcutaneous fat, most 'beige' adipocytes stem from de novo –differentiated adipocytes. During HFD feeding, epididymal fat initiates adipogenesis after 4 weeks, whereas subcutaneous fat undergoes hypertrophy for a period of up to 12 weeks. Gonadal fat develops postnatally, whereas subcutaneous fat develops between embryonic days 14 and 18. Our results highlight the extensive differences in adipogenic potential in various fat depots.
Browning of white fat: agents and implications for beige adipose tissue to type 2 diabetes
Mammalian adipose tissue is traditionally categorized into white and brown relating to their function and morphology: while white serves as an energy storage, brown adipose tissue acts as the heat generator maintaining the core body temperature. The most recently identified type of fat, beige adipocyte tissue, resembles brown fat by morphology and function but is developmentally more related to white. The synthesis of beige fat, so-called browning of white fat, has developed into a topical issue in diabetes and metabolism research. This is due to its favorable effect on whole-body energy metabolism and the fact that it can be recruited during adult life. Indeed, brown and beige adipose tissues have been demonstrated to play a role in glucose homeostasis, insulin sensitivity, and lipid metabolism—all factors related to pathogenesis of type 2 diabetes. Many agents capable of initiating browning have been identified so far and tested widely in humans and animal models including in vitro and in vivo experiments. Interestingly, several agents demonstrated to have browning activity are in fact secreted as adipokines from brown and beige fat tissue, suggesting a physiological relevance both in beige adipocyte recruitment processes and in maintenance of metabolic homeostasis. The newest findings on agents driving beige fat recruitment, their mechanisms, and implications on type 2 diabetes are discussed in this review.
Visceral and subcutaneous fat have different origins and evidence supports a mesothelial source
Increased visceral adipose tissue has been associated with metabolic dysfunction but the origin of the progenitors that give rise to this tissue, and whether they are the same as the progenitors contributing to the protective subcutaneous adipose tissue, was unclear. Hastie and colleagues have found that Wt1-positive mesothelial cells contribute to visceral adipocytes. Fuelled by the obesity epidemic, there is considerable interest in the developmental origins of white adipose tissue (WAT) and the stem and progenitor cells from which it arises. Whereas increased visceral fat mass is associated with metabolic dysfunction, increased subcutaneous WAT is protective. There are six visceral fat depots: perirenal, gonadal, epicardial, retroperitoneal, omental and mesenteric, and it is a subject of much debate whether these have a common developmental origin and whether this differs from that for subcutaneous WAT. Here we show that all six visceral WAT depots receive a significant contribution from cells expressing Wt1 late in gestation. Conversely, no subcutaneous WAT or brown adipose tissue arises from Wt1-expressing cells. Postnatally, a subset of visceral WAT continues to arise from Wt1-expressing cells, consistent with the finding that Wt1 marks a proportion of cell populations enriched in WAT progenitors. We show that all visceral fat depots have a mesothelial layer like the visceral organs with which they are associated, and provide several lines of evidence that Wt1-expressing mesothelium can produce adipocytes. These results reveal a major ontogenetic difference between visceral and subcutaneous WAT, and pinpoint the lateral plate mesoderm as a major source of visceral WAT. They also support the notion that visceral WAT progenitors are heterogeneous, and suggest that mesothelium is a source of adipocytes.
Fish oil intake induces UCP1 upregulation in brown and white adipose tissue via the sympathetic nervous system
Brown adipose tissue (BAT) plays a central role in regulating energy homeostasis and may provide novel strategies for the treatment of human obesity. BAT-mediated thermogenesis is regulated by mitochondrial uncoupling protein 1 (UCP1) in classical brown and ectopic beige adipocytes and is controlled by sympathetic nervous system (SNS). Previous work indicated that fish oil intake reduces fat accumulation and induces UCP1 expression in BAT; however, the detailed mechanism of this effect remains unclear. In this study, we investigated the effect of fish oil on energy expenditure and the SNS. Fish oil intake increased oxygen consumption and rectal temperature, with concomitant upregulation of UCP1 and the β3 adrenergic receptor (β3AR), two markers of beige adipocytes, in the interscapular BAT and inguinal white adipose tissue (WAT). Additionally, fish oil intake increased the elimination of urinary catecholamines and the noradrenaline (NA) turnover rate in interscapular BAT and inguinal WAT. Furthermore, the effects of fish oil on SNS-mediated energy expenditure were abolished in transient receptor potential vanilloid 1 (TRPV1) knockout mice. In conclusion, fish oil intake can induce UCP1 expression in classical brown and beige adipocytes via the SNS, thereby attenuating fat accumulation and ameliorating lipid metabolism.
Ebf2 is a selective marker of brown and beige adipogenic precursor cells
Significance High levels of brown/beige fat activity protects animals against metabolic disease, but there has been little known about the precursor cells that mediate the expansion of brown or beige fat. We discovered that early B-cell factor 2 (Ebf2), a transcription factor, is selectively expressed in brown and beige fat cell precursors. Through purification of Ebf2 ⁺ cells, we identified a gene profile of brown fat precursors that can be used to distinguish these cells from other developmentally related cell types. Importantly, Ebf2 was also found to regulate the gene expression profile of brown fat precursor cells. Taken together, this study identifies Ebf2 as a highly specific marker of brown and beige preadipose cells and reveals that Ebf2 functions to control brown preadipose cell identity. Brown adipocytes and muscle and dorsal dermis descend from precursor cells in the dermomyotome, but the factors that regulate commitment to the brown adipose lineage are unknown. Here, we prospectively isolated and determined the molecular profile of embryonic brown preadipose cells. Brown adipogenic precursor activity in embryos was confined to platelet-derived growth factor α ⁺, myogenic factor 5 Cʳᵉ-lineage–marked cells. RNA-sequence analysis identified early B-cell factor 2 ( Ebf2 ) as one of the most selectively expressed genes in this cell fraction. Importantly, Ebf2 -expressing cells purified from Ebf2 ᴳFᴾ embryos or brown fat tissue did not express myoblast or dermal cell markers and uniformly differentiated into brown adipocytes. Interestingly, Ebf2 -expressing cells from white fat tissue in adult animals differentiated into brown-like (or beige) adipocytes. Loss of Ebf2 in brown preadipose cells reduced the expression levels of brown preadipose-signature genes, whereas ectopic Ebf2 expression in myoblasts activated brown preadipose-specific genes. Altogether, these results indicate that Ebf2 specifically marks and regulates the molecular profile of brown preadipose cells.