Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
1 result(s) for "wind power: wind speed: T–S fuzzy model: forecasting"
Sort by:
Wind Speed and Power Ultra Short-Term Robust Forecasting Based on Takagi–Sugeno Fuzzy Model
Accurate wind power and wind speed forecasting remains a critical challenge in wind power systems management. This paper proposes an ultra short-time forecasting method based on the Takagi–Sugeno (T–S) fuzzy model for wind power and wind speed. The model does not rely on a large amount of historical data and can obtain accurate forecasting results though efficient linearization. The proposed method employs meteorological measurements as input. Next, the antecedent and the consequent parameters of the forecasting model are identified by the fuzzy c-means clustering algorithm and the recursive least squares method. From these components, the T–S fuzzy model is obtained. Wind farms located in China (Shanxi Province) and in Ireland (County Kerry) are considered as cases with which to validate the proposed forecasting method. The forecasting results are compared with results from the contemporary machine learning-based models including support vector machine (SVM), the combined model of SVM and empirical mode decomposition, and back propagation neural network methods. The results show that the proposed T–S fuzzy model can effectively improve the precision of the short-term wind power forecasting.