Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Source
    • Language
1,207 result(s) for "wind tunnel test"
Sort by:
Wind-Induced Response Control of High-Rise Buildings Using Inerter-Based Vibration Absorbers
The beneficial mass-amplification effect induced by the inerter can be conveniently used in enhanced variants of the traditional Tuned Mass Damper (TMD), namely the Tuned Mass-Damper-Inerter (TMDI) and its special case of Tuned Inerter Damper (TID). In this paper, these inerter-based vibration absorbers are studied for mitigating the wind-induced response of high-rise buildings, with particular emphasis on a 340 m tall building analyzed as case study. To adopt a realistic wind-excitation model, the analysis is based on aerodynamic forces computed through experimental wind tunnel tests for a scaled prototype of the benchmark building, which accounts for the actual cross-section of the structure and the existing surrounding conditions. Mass and stiffness parameters are extracted from the finite element model of the primary structure. Performance-based optimization of the TMDI and the TID is carried out to find a good trade-off between displacement- and acceleration-response mitigation, with the installation floor being an explicit design variable in addition to frequency and damping ratio. The results corresponding to 24 different wind directions indicate that the best vibration mitigation is achieved with a lower installation floor of the TMDI/TID scheme than the topmost floor. The effects of different parameters of TMD, TMDI and TID on wind-induced displacement and acceleration responses and on the equivalent static wind loads (ESWLs) are comparatively evaluated. It is shown that the optimally designed TMDI/TID can achieve better wind-induced vibration mitigation than the TMD while allocating lower or null attached mass, especially in terms of acceleration response.
Experimental Study on Identification of Aerodynamic Damping Matrix for the Tower of an Operating Wind Turbine by Artificial Excitation
Quantitation of damping is of great significance for the design and condition assessment of wind turbines. The authors' previous theoretical and numerical studies showed that compared with damping ratios, a modal aerodynamic damping matrix can better describe the damping coupling in the fore‐aft (FA) and side‐side (SS) tower motions. In the present study, an improved damping identification method was first proposed to identify this damping matrix with artificial exciters and then verified by using OpenFAST simulations under different excitation frequencies, excitation force amplitudes, and turbulent wind fields. Following the numerical study, a scaled wind turbine model with a geometric scale ratio of 1/75 was carefully designed based on the NREL 5‐MW wind turbine prototype, in which the scaled blade design follows the rule in thrust coefficient similarity. An identification study was performed with this scaled model by a series of wind tunnel tests. The modal aerodynamic damping matrix was identified under steady‐state harmonic excitation in the operating state and compared with the identified results by a free decay method and the theoretical values. The results experimentally confirm the correctness of the aerodynamic damping matrix theory under uniform wind and the feasibility of the improved identification method in practice.
An Experimental Study on Adhesion Strength of Offshore Atmospheric Icing on a Wind Turbine Blade Airfoil
When wind turbines work in a cold and humid environment, especially offshore condition, ice accretion on the blade surfaces has a negative effect on the aerodynamic performance. In order to remove the ice from the wind turbine blade, the adhesive characteristics of atmospheric icing on the blade surface should be mastered under various conditions. The objective of this study is to evaluate the effects of offshore atmospheric conditions, including wind speeds, ambient temperatures and, especially, the salt contents on ice adhesion strength for wind turbine blades. The experiments were conducted on a NACA0018 blade airfoil under conditions including an ambient temperature of −3 °C~−15 °C, wind speed of 6 m/s~15 m/s and salt content of 1~20 mg/m3. The results showed that salt content was the most important factor affecting the ice adhesion strength, followed by ambient temperature and wind speed. The interactive effect of wind speed and salt content, ambient temperature and salt content were extremely significant. The research can provide a reference for the anti-icing for offshore wind turbines.
Experimental Study of Self-starting Characteristics for H-Type Wind Turbine
In order to study self-starting characteristics for H-type wind turbine, firstly, the effect of low Reynolds number and large separated flow on aerodynamic characteristics of airfoil were analyzed in detail, then two H-type wind turbines with different aerodynamic configurations were tested in a low speed wind tunnel for collecting the static torques at different phase angles and time-rotating speed curves in starting process. Based on theoretical analysis and experimental data, the cause of self-stating problem of H-type wind turbine has been revealed. The aerodynamic profile parameters of the wind turbine are closely related to the dependency of starting on initial phase position, and the minimum static torque determines whether the wind turbine has potential to start from rest. The time-rotating speed curves exhibit two different starting behaviour features, determined by the minimum dynamic torque in driving force conversion stage. Unless both the minimum static torque and minimum dynamic torque in driving force conversion stage are greater than the friction torque, the self-starting of the wind turbine cannot be realized. The typical self-starting behavior characteristics is that the time-rotating speed curve includes four different stages of initial linear acceleration, plateau, rapid acceleration and stable equilibrium with the final tip speed ratio more than 1.
Experimental Investigation of Wind Pressure Characteristics for Cladding of Dome Roofs
Cladding for dome roofs is often made of membrane materials that are light and easy to install. Due to these characteristics, wind damage to dome roof cladding is very common. In particular, open or retractable dome roofs are prone to wind damage because of inadequacies in wind load calculations. In this study, the wind pressure characteristics of a dome with a central opening were investigated. Wind tunnel tests were performed, and the pressure distribution was investigated by analyzing external and internal pressure coefficients. Based on the experimental results, the peak net pressure coefficients for the cladding design of a dome roof with a central opening were proposed. For the external peak pressure coefficients, the values of leeward regions were similar despite height–span ratios and turbulence intensity values. For the internal peak pressure coefficients, negative pressure was dominant, and the coefficients were not significantly affected by changes in height–span ratio. This tendency locally increased the negative peak net pressure, in which the load acts in the upward direction, and relatively significantly increased the positive peak net pressure, in which the load acts in the downward direction.
Effect of Pitch Angle and Reynolds Number on Aerodynamic Characteristics of a Small Horizontal Axis Wind Rotor
Wind tunnel experiments were conducted on a 2-blade horizontal axis wind rotor to investigate the effect of pitch angle and Reynolds number on aerodynamic characteristics. The experimental study was conducted in the start-up and operating stages and the results for the two stages are discussed, respectively. During start-up, with tip speed ratio less than 1, the power coefficient of the rotor increases with pitch angles, but remains almost constant with Reynolds number. In the operating stage, with tip speed ratio more than 1, the maximum power coefficient occurs at decreasing tip speed ratios as the pitch angle increases. In addition, the maximum power coefficient increases and the corresponding tip speed ratio decreases with Reynolds number. The aerodynamic characteristics of the rotor can be analyzed qualitatively based on reliable and full aerodynamic data of the airfoil, which contributes to selection of the airfoil and determination of the rated velocity.
Investigation on Stability and Galloping Characteristics of Iced Quad Bundle Conductor
The stability and galloping characteristics of iced quad bundle conductor are studied in this paper. Firstly, the aerodynamic coefficients of iced quad bundle conductor and single conductor under four different working conditions are obtained by wind tunnel test. Secondly, the equivalent aerodynamic coefficients at the central axis of the quad bundle conductor are obtained, and the equivalent aerodynamic coefficients are compared with the aerodynamic coefficients of each sub-conductor of the quad bundle conductor. Then, based on the Den Hartog instability mechanism and Nigol instability mechanism, the stable and unstable range of the equivalent coefficients of the quad bundle conductor are analyzed. Finally, the galloping characteristics of the quad bundle conductor are studied by combining with the equivalent aerodynamic coefficients at the central axis of quad bundle conductor. The results of the wind tunnel test show that the aerodynamic coefficients increase with the decreasing of the wind speed. The stability analyses show that the higher the wind speed is, the smaller the Den Hartog coefficient is the easier the Den Hartog’ galloping would occur. Furthermore, the higher the wind speed is, the smaller the Nigol coefficient is, the easier the Nigol’ galloping would occur. The analysis of galloping characteristics shows that when the conductor is located at stable state, the displacement in the y-axis direction would be much greater than the displacement in the z-axis direction.
Wind tunnel test of snow loads on a stepped flat roof using different granular materials
An accurate prediction of wind-induced redistribution of snow load on roof surfaces is vital to structural design. To represent the pattern of snow distribution caused by snowdrift in wind tunnel test, appropriate modeling particles should be selected. The particle density is the key to determine the values of several important similarity parameters. In this study, the redistribution of snow load on a stepped flat roof was simulated by means of wind tunnel test using low-density saw wood ash, medium-density polyfoam, and high-density silica sand, respectively. To ensure the comparability of the test results of the three modeling particles, the wind tunnel test results for comparison were performed under almost the same conditions of dimensionless wind velocity and dimensionless time. Then, the results of the present study were compared with those from field observations of prototypes in previous studies. The effects of wind duration, wind velocity, and roof span on the redistribution of snow on roof surfaces were investigated. The characteristics of erosion/deposition range and the location of maximum quantities of erosion/deposition under independent effects of wind duration, wind velocity, and roof span were also studied.