Asset Details
MbrlCatalogueTitleDetail
Do you wish to reserve the book?
Free Energy and Equilibrium States for Families of Interval Maps
by
Dobbs, Neil
, Todd, Mike
in
Dynamics
/ Ergodic theory
2023
Hey, we have placed the reservation for you!
By the way, why not check out events that you can attend while you pick your title.
You are currently in the queue to collect this book. You will be notified once it is your turn to collect the book.
Oops! Something went wrong.
Looks like we were not able to place the reservation. Kindly try again later.
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
Do you wish to request the book?
Free Energy and Equilibrium States for Families of Interval Maps
by
Dobbs, Neil
, Todd, Mike
in
Dynamics
/ Ergodic theory
2023
Please be aware that the book you have requested cannot be checked out. If you would like to checkout this book, you can reserve another copy
We have requested the book for you!
Your request is successful and it will be processed during the Library working hours. Please check the status of your request in My Requests.
Oops! Something went wrong.
Looks like we were not able to place your request. Kindly try again later.
Free Energy and Equilibrium States for Families of Interval Maps
eBook
Free Energy and Equilibrium States for Families of Interval Maps
2023
Request Book From Autostore
and Choose the Collection Method
Overview
We study continuity, and lack thereof, of thermodynamical properties for one-dimensional dynamical systems. Under quite general
hypotheses, the free energy is shown to be almost upper-semicontinuous: some normalised component of a limit measure will have free
energy at least that of the limit of the free energies. From this, we deduce results concerning existence and continuity of equilibrium
states (including statistical stability). Metric entropy, not semicontinuous as a general multimodal map varies, is shown to be upper
semicontinuous under an appropriate hypothesis on critical orbits. Equilibrium states vary continuously, under mild hypotheses, as one
varies the parameter and the map. We give a general method for constructing induced maps which automatically give strong exponential
tail estimates. This also allows us to recover, and further generalise, recent results concerning statistical properties (decay of
correlations, etc.). Counterexamples to statistical stability are given which also show sharpness of the main results.
Publisher
American Mathematical Society
Subject
ISBN
9781470461263, 1470461269
This website uses cookies to ensure you get the best experience on our website.