MbrlCatalogueTitleDetail

Do you wish to reserve the book?
Gas Diffusivity in Undisturbed Volcanic Ash Soils
Gas Diffusivity in Undisturbed Volcanic Ash Soils
Hey, we have placed the reservation for you!
Hey, we have placed the reservation for you!
By the way, why not check out events that you can attend while you pick your title.
You are currently in the queue to collect this book. You will be notified once it is your turn to collect the book.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place the reservation. Kindly try again later.
Are you sure you want to remove the book from the shelf?
Gas Diffusivity in Undisturbed Volcanic Ash Soils
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
Title added to your shelf!
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Do you wish to request the book?
Gas Diffusivity in Undisturbed Volcanic Ash Soils
Gas Diffusivity in Undisturbed Volcanic Ash Soils

Please be aware that the book you have requested cannot be checked out. If you would like to checkout this book, you can reserve another copy
How would you like to get it?
We have requested the book for you! Sorry the robot delivery is not available at the moment
We have requested the book for you!
We have requested the book for you!
Your request is successful and it will be processed during the Library working hours. Please check the status of your request in My Requests.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place your request. Kindly try again later.
Gas Diffusivity in Undisturbed Volcanic Ash Soils
Gas Diffusivity in Undisturbed Volcanic Ash Soils
Journal Article

Gas Diffusivity in Undisturbed Volcanic Ash Soils

2003
Request Book From Autostore and Choose the Collection Method
Overview
Soil‐water‐characteristic‐dependent (SWC‐dependent) models to predict the gas diffusion coefficient, D P , in undisturbed soil have only been tested within limited ranges of pore‐size distribution and total porosity. Andisols (volcanic ash soils) exhibit unusually high porosities and water retention properties. The Campbell SWC model and two Campbell SWC‐based models for predicting D P in undisturbed soil were tested against SWC and D P data for 18 Andisols and four Gray‐lowland (paddy field) soils from Japan. The Campbell model accurately described SWC data for all 22 soils within the matric potential range from ≈ −10 to −15000 cm H 2 O. The SWC‐dependent Buckingham‐Burdine‐Campbell (BBC) gas diffusivity model predicted D P data well within the same matric potential range for the 18 Andisols. The BBC model showed a minor but systematic underprediction of D P for three out of the four Gray‐lowland soils, likely due to a blocky soil structure with internal fissures. A recent D P model that also takes into account macroporosity performed nearly as well as the BBC model. However, D P in the macropore region (air‐filled pores >30 μm) was consistently underpredicted, likely due to high continuity of the macropore system in both Andisols and Gray‐lowland soils. In agreement with previous model tests for 21 European soils (representing lower porosities and water retention properties), both SWC‐dependent D P models gave better predictions for the 22 Japanese soils than soil‐type independent models. Combining D P and SWC data, a so‐called gas diffusion fingerprint (GDF) plot to describe soil aeration potential is proposed.