MbrlCatalogueTitleDetail

Do you wish to reserve the book?
The Hydration and Volume Expansion Mechanisms of Modified Expansive Cements for Sustainable In-Situ Rock Fragmentation: A Review
The Hydration and Volume Expansion Mechanisms of Modified Expansive Cements for Sustainable In-Situ Rock Fragmentation: A Review
Hey, we have placed the reservation for you!
Hey, we have placed the reservation for you!
By the way, why not check out events that you can attend while you pick your title.
You are currently in the queue to collect this book. You will be notified once it is your turn to collect the book.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place the reservation. Kindly try again later.
Are you sure you want to remove the book from the shelf?
The Hydration and Volume Expansion Mechanisms of Modified Expansive Cements for Sustainable In-Situ Rock Fragmentation: A Review
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
Title added to your shelf!
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Do you wish to request the book?
The Hydration and Volume Expansion Mechanisms of Modified Expansive Cements for Sustainable In-Situ Rock Fragmentation: A Review
The Hydration and Volume Expansion Mechanisms of Modified Expansive Cements for Sustainable In-Situ Rock Fragmentation: A Review

Please be aware that the book you have requested cannot be checked out. If you would like to checkout this book, you can reserve another copy
How would you like to get it?
We have requested the book for you! Sorry the robot delivery is not available at the moment
We have requested the book for you!
We have requested the book for you!
Your request is successful and it will be processed during the Library working hours. Please check the status of your request in My Requests.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place your request. Kindly try again later.
The Hydration and Volume Expansion Mechanisms of Modified Expansive Cements for Sustainable In-Situ Rock Fragmentation: A Review
The Hydration and Volume Expansion Mechanisms of Modified Expansive Cements for Sustainable In-Situ Rock Fragmentation: A Review
Journal Article

The Hydration and Volume Expansion Mechanisms of Modified Expansive Cements for Sustainable In-Situ Rock Fragmentation: A Review

2021
Request Book From Autostore and Choose the Collection Method
Overview
This review provides the hydration and volume expansion mechanism of expansive materials, with the goal of utilizing them in the development of sustainable mining methods. The main focus of the review will be the newly developed non-destructible rock fragmentation method, slow releasing energy material agent (SREMA), which is a modified soundless chemical demolition agent (SCDA). The review aims to address one of the main gaps in studies related to SREMA, by presenting a thorough understanding of the components of SREMA and their mechanisms of action, leading to volume expansion. Thus, this review would act as a guide for researchers working on using expansive materials for rock breaking. As many literatures have not been published regarding the recently discovered SREMA, studies on cements, expansive cements, and soundless chemical demolition agents (SCDA) were mainly considered. The chemical reactions and volume expansive processes of these materials have been studied and incorporated with the additives included in SREMA, to understand its behavior. Literature containing experimental studies analyzing the heat of hydration and microstructural changes have been mostly considered along with some of the heavily discussed hypotheses regarding the hydration of certain components, to predict the volume expansive mechanism of SREMA. Studies related to SREMA and other similar materials have shown drastic changes in the heats of hydration as the composition varies. Thus, SREMA has the capability of giving a wider range of expansive energies in diverse environmental conditions