MbrlCatalogueTitleDetail

Do you wish to reserve the book?
Imaging spectroscopy algorithms for mapping canopy foliar chemical and morphological traits and their uncertainties
Imaging spectroscopy algorithms for mapping canopy foliar chemical and morphological traits and their uncertainties
Hey, we have placed the reservation for you!
Hey, we have placed the reservation for you!
By the way, why not check out events that you can attend while you pick your title.
You are currently in the queue to collect this book. You will be notified once it is your turn to collect the book.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place the reservation. Kindly try again later.
Are you sure you want to remove the book from the shelf?
Imaging spectroscopy algorithms for mapping canopy foliar chemical and morphological traits and their uncertainties
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
Title added to your shelf!
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Do you wish to request the book?
Imaging spectroscopy algorithms for mapping canopy foliar chemical and morphological traits and their uncertainties
Imaging spectroscopy algorithms for mapping canopy foliar chemical and morphological traits and their uncertainties

Please be aware that the book you have requested cannot be checked out. If you would like to checkout this book, you can reserve another copy
How would you like to get it?
We have requested the book for you! Sorry the robot delivery is not available at the moment
We have requested the book for you!
We have requested the book for you!
Your request is successful and it will be processed during the Library working hours. Please check the status of your request in My Requests.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place your request. Kindly try again later.
Imaging spectroscopy algorithms for mapping canopy foliar chemical and morphological traits and their uncertainties
Imaging spectroscopy algorithms for mapping canopy foliar chemical and morphological traits and their uncertainties
Journal Article

Imaging spectroscopy algorithms for mapping canopy foliar chemical and morphological traits and their uncertainties

2015
Request Book From Autostore and Choose the Collection Method
Overview
A major goal of remote sensing is the development of generalizable algorithms to repeatedly and accurately map ecosystem properties across space and time. Imaging spectroscopy has great potential to map vegetation traits that cannot be retrieved from broadband spectral data, but rarely have such methods been tested across broad regions. Here we illustrate a general approach for estimating key foliar chemical and morphological traits through space and time using NASA's Airborne Visible/Infrared Imaging Spectrometer (AVIRIS-Classic). We apply partial least squares regression (PLSR) to data from 237 field plots within 51 images acquired between 2008 and 2011. Using a series of 500 randomized 50/50 subsets of the original data, we generated spatially explicit maps of seven traits (leaf mass per area ( M area ), percentage nitrogen, carbon, fiber, lignin, and cellulose, and isotopic nitrogen concentration, δ 15 N) as well as pixel-wise uncertainties in their estimates based on error propagation in the analytical methods. Both M area and %N PLSR models had a R 2 > 0.85. Root mean square errors (RMSEs) for both variables were less than 9% of the range of data. Fiber and lignin were predicted with R 2 > 0.65 and carbon and cellulose with R 2 > 0.45. Although R 2 of %C and cellulose were lower than M area and %N, the measured variability of these constituents (especially %C) was also lower, and their RMSE values were beneath 12% of the range in overall variability. Model performance for δ 15 N was the lowest ( R 2 = 0.48, RMSE = 0.95‰), but within 15% of the observed range. The resulting maps of chemical and morphological traits, together with their overall uncertainties, represent a first-of-its-kind approach for examining the spatiotemporal patterns of forest functioning and nutrient cycling across a broad range of temperate and sub-boreal ecosystems. These results offer an alternative to categorical maps of functional or physiognomic types by providing non-discrete maps (i.e., on a continuum) of traits that define those functional types. A key contribution of this work is the ability to assign retrieval uncertainties by pixel, a requirement to enable assimilation of these data products into ecosystem modeling frameworks to constrain carbon and nutrient cycling projections.