Asset Details
MbrlCatalogueTitleDetail
Do you wish to reserve the book?
Forsterite dissolution kinetics: Applications and implications for chemical weathering
by
Olsen, Amanda Albright
in
Geochemistry
2007
Hey, we have placed the reservation for you!
By the way, why not check out events that you can attend while you pick your title.
You are currently in the queue to collect this book. You will be notified once it is your turn to collect the book.
Oops! Something went wrong.
Looks like we were not able to place the reservation. Kindly try again later.
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
Do you wish to request the book?
Forsterite dissolution kinetics: Applications and implications for chemical weathering
by
Olsen, Amanda Albright
in
Geochemistry
2007
Please be aware that the book you have requested cannot be checked out. If you would like to checkout this book, you can reserve another copy
We have requested the book for you!
Your request is successful and it will be processed during the Library working hours. Please check the status of your request in My Requests.
Oops! Something went wrong.
Looks like we were not able to place your request. Kindly try again later.
Forsterite dissolution kinetics: Applications and implications for chemical weathering
Dissertation
Forsterite dissolution kinetics: Applications and implications for chemical weathering
2007
Request Book From Autostore
and Choose the Collection Method
Overview
Silicate minerals are the most common mineral group in the earth’s crust so it is not surprising that their weathering reactions dominate the chemistry of many earth surface processes. This project used forsterite as a model system to identify the important factors that affect silicate mineral dissolution rates and grain lifetimes in the weathering environment. I determined an empirical rate law for forsterite dissolution of forsterite in oxalic acid solutions: [special characters omitted]based on a series of 124 semi-batch reactor experiments over a pH range of 0 to 7 and total oxalate concentrations between 0 and 0.35 m at 25°C. These experiments show that oxalate-promoted dissolution rates depend upon both oxalate concentration and pH. I propose a reaction mechanism in which a hydrogen ion and an oxalate ion are simultaneously present in the activated complex for the reaction that releases H4SiO 4 into solution. By analogy, I propose that water acts as a ligand in the absence of oxalate. I also ran 82 batch reactor experiments in magnesium and sodium sulfate and magnesium and potassium nitrate solutions. These experiments show that ionic strength up to 12 m, log mMg up to 4 m, and log mSO4 up to 3 m have no effect on forsterite dissolution rates. However, decreasing aH2O slows forsterite dissolution rates. The effect of decreasing dissolution rates with decreasing aH2O is consistent with the idea that water acts as a ligand that participates in the dissolution process. Forsterite dissolution rate data from previously published studies were combined with results from my experiments and regressed to produce rate laws at low and high pH. For pH < 5.05 [special characters omitted]and for pH > 5.05 [special characters omitted]I then developed a diagram that shows the effect rate-determining variables on the lifetime of olivine grains in weathering environments using these rate laws.
This website uses cookies to ensure you get the best experience on our website.