MbrlCatalogueTitleDetail

Do you wish to reserve the book?
Tundra fire increases the likelihood of methane hotspot formation in the Yukon–Kuskokwim Delta, Alaska, USA
Tundra fire increases the likelihood of methane hotspot formation in the Yukon–Kuskokwim Delta, Alaska, USA
Hey, we have placed the reservation for you!
Hey, we have placed the reservation for you!
By the way, why not check out events that you can attend while you pick your title.
You are currently in the queue to collect this book. You will be notified once it is your turn to collect the book.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place the reservation. Kindly try again later.
Are you sure you want to remove the book from the shelf?
Tundra fire increases the likelihood of methane hotspot formation in the Yukon–Kuskokwim Delta, Alaska, USA
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
Title added to your shelf!
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Do you wish to request the book?
Tundra fire increases the likelihood of methane hotspot formation in the Yukon–Kuskokwim Delta, Alaska, USA
Tundra fire increases the likelihood of methane hotspot formation in the Yukon–Kuskokwim Delta, Alaska, USA

Please be aware that the book you have requested cannot be checked out. If you would like to checkout this book, you can reserve another copy
How would you like to get it?
We have requested the book for you! Sorry the robot delivery is not available at the moment
We have requested the book for you!
We have requested the book for you!
Your request is successful and it will be processed during the Library working hours. Please check the status of your request in My Requests.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place your request. Kindly try again later.
Tundra fire increases the likelihood of methane hotspot formation in the Yukon–Kuskokwim Delta, Alaska, USA
Tundra fire increases the likelihood of methane hotspot formation in the Yukon–Kuskokwim Delta, Alaska, USA
Journal Article

Tundra fire increases the likelihood of methane hotspot formation in the Yukon–Kuskokwim Delta, Alaska, USA

2023
Request Book From Autostore and Choose the Collection Method
Overview
Rapid warming in Arctic tundra may lead to drier soils in summer and greater lightning ignition rates, likely culminating in enhanced wildfire risk. Increased wildfire frequency and intensity leads to greater conversion of permafrost carbon to greenhouse gas emissions. Here, we quantify the effect of recent tundra fires on the creation of methane (CH 4 ) emission hotspots, a fingerprint of the permafrost carbon feedback. We utilized high-resolution (∼25 m 2 pixels) and broad coverage (1780 km 2 ) airborne imaging spectroscopy and maps of historical wildfire-burned areas to determine whether CH 4 hotspots were more likely in areas burned within the last 50 years in the Yukon–Kuskokwim Delta, Alaska, USA. Our observations provide a unique observational constraint on CH 4 dynamics, allowing us to map CH 4 hotspots in relation to individual burn events, burn scar perimeters, and proximity to water. We find that CH 4 hotspots are roughly 29% more likely on average in tundra that burned within the last 50 years compared to unburned areas and that this effect is nearly tripled along burn scar perimeters that are delineated by surface water features. Our results indicate that the changes following tundra fire favor the complex environmental conditions needed to generate CH 4 emission hotspots. We conclude that enhanced CH 4 emissions following tundra fire represent a positive feedback that will accelerate climate warming, tundra fire occurrence, and future permafrost carbon loss to the atmosphere.