MbrlCatalogueTitleDetail

Do you wish to reserve the book?
f(R) cosmology with torsion
f(R) cosmology with torsion
Hey, we have placed the reservation for you!
Hey, we have placed the reservation for you!
By the way, why not check out events that you can attend while you pick your title.
You are currently in the queue to collect this book. You will be notified once it is your turn to collect the book.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place the reservation. Kindly try again later.
Are you sure you want to remove the book from the shelf?
f(R) cosmology with torsion
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
Title added to your shelf!
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Do you wish to request the book?
f(R) cosmology with torsion
f(R) cosmology with torsion

Please be aware that the book you have requested cannot be checked out. If you would like to checkout this book, you can reserve another copy
How would you like to get it?
We have requested the book for you! Sorry the robot delivery is not available at the moment
We have requested the book for you!
We have requested the book for you!
Your request is successful and it will be processed during the Library working hours. Please check the status of your request in My Requests.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place your request. Kindly try again later.
f(R) cosmology with torsion
Paper

f(R) cosmology with torsion

2008
Request Book From Autostore and Choose the Collection Method
Overview
f(R)-gravity with geometric torsion (not related to any spin fluid) is considered in a cosmological context. We derive the field equations in vacuum and in presence of perfect-fluid matter and discuss the related cosmological models. Torsion vanishes in vacuum for almost all arbitrary functions f(R) leading to standard General Relativity. Only for f(R)=R^{2}, torsion gives contribution in the vacuum leading to an accelerated behavior . When material sources are considered, we find that the torsion tensor is different from zero even with spinless material sources. This tensor is related to the logarithmic derivative of f'(R), which can be expressed also as a nonlinear function of the trace of the matter energy-momentum tensor. We show that the resulting equations for the metric can always be arranged to yield effective Einstein equations. When the homogeneous and isotropic cosmological models are considered, terms originated by torsion can lead to accelerated expansion. This means that, in f(R) gravity, torsion can be a geometric source for acceleration.