MbrlCatalogueTitleDetail

Do you wish to reserve the book?
Tight conditions for consistency of variable selection in the context of high dimensionality
Tight conditions for consistency of variable selection in the context of high dimensionality
Hey, we have placed the reservation for you!
Hey, we have placed the reservation for you!
By the way, why not check out events that you can attend while you pick your title.
You are currently in the queue to collect this book. You will be notified once it is your turn to collect the book.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place the reservation. Kindly try again later.
Are you sure you want to remove the book from the shelf?
Tight conditions for consistency of variable selection in the context of high dimensionality
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
Title added to your shelf!
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Do you wish to request the book?
Tight conditions for consistency of variable selection in the context of high dimensionality
Tight conditions for consistency of variable selection in the context of high dimensionality

Please be aware that the book you have requested cannot be checked out. If you would like to checkout this book, you can reserve another copy
How would you like to get it?
We have requested the book for you! Sorry the robot delivery is not available at the moment
We have requested the book for you!
We have requested the book for you!
Your request is successful and it will be processed during the Library working hours. Please check the status of your request in My Requests.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place your request. Kindly try again later.
Tight conditions for consistency of variable selection in the context of high dimensionality
Tight conditions for consistency of variable selection in the context of high dimensionality
Paper

Tight conditions for consistency of variable selection in the context of high dimensionality

2013
Request Book From Autostore and Choose the Collection Method
Overview
We address the issue of variable selection in the regression model with very high ambient dimension, that is, when the number of variables is very large. The main focus is on the situation where the number of relevant variables, called intrinsic dimension, is much smaller than the ambient dimension d. Without assuming any parametric form of the underlying regression function, we get tight conditions making it possible to consistently estimate the set of relevant variables. These conditions relate the intrinsic dimension to the ambient dimension and to the sample size. The procedure that is provably consistent under these tight conditions is based on comparing quadratic functionals of the empirical Fourier coefficients with appropriately chosen threshold values. The asymptotic analysis reveals the presence of two quite different re gimes. The first regime is when the intrinsic dimension is fixed. In this case the situation in nonparametric regression is the same as in linear regression, that is, consistent variable selection is possible if and only if log d is small compared to the sample size n. The picture is different in the second regime, that is, when the number of relevant variables denoted by s tends to infinity as \\(n\\to\\infty\\). Then we prove that consistent variable selection in nonparametric set-up is possible only if s+loglog d is small compared to log n. We apply these results to derive minimax separation rates for the problem of variable
Publisher
Cornell University Library, arXiv.org